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Contents V

Radiation oncology is one of the most important treatment facilities in the management of 
malignant tumors. Although this specialty is in the first line a physician’s task, a variety 
of technical equipment and technical know-how is necessary to treat patients in the most 
effective way possible today.

The book by Schlegel et al., “New Technologies in Radiation Oncology,” provides an 
overview of recent advances in radiation oncology, many of which have originated from 
physics and engineering sciences. 3D treatment planning, conformal radiotherapy, with 
consideration of both external radiotherapy and brachytherapy, stereotactic radiotherapy, 
intensity-modulated radiation therapy, image-guided and adaptive radiotherapy, and 
radiotherapy with charged particles are described meticulously . Because radiotherapy is 
a doctor’s task, clinically orientated chapters explore the use of therapeutic radiology in 
different oncologic situations. A chapter on quality assurance concludes this timely pub-
lication.

The book will be very helpful for doctors in treating patients as well as for physicists and 
other individuals interested in oncology.

Philadelphia Luther W. Brady
Hamburg Hans-Peter Heilmann
Munich Michael Molls

Foreword
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Preface

In the 1960s radiation therapy was considered an empirical, clinical discipline with a 
relatively low probability of success. This situation has changed considerably during the 
past 40 years.

Radiation therapy is based heavily on fields such as physics, mathematics, computer 
science and radiation biology as well as electrical and mechanical engineering, making it 
a truly interdisciplinary field, unparalleled by any other clinical discipline. Now radiation 
therapy can be applied so safely, precisely and efficiently that the previously feared side 
effects no longer play a role. At the same time, tumour control, and the probability of cure, 
has significantly increased for many tumour patients. This change from an empirical and 
qualitative discipline to a scientifically based, precise clinical science has been accompa-
nied by groundbreaking innovations in physics and technology (Fig. 1).

∑ The fi rst important step was the replacement of cobalt-60 and betatrons as irradiation 
sources by electron-linear accelerators (also known as “linacs”) between 1960 and 1980. 
Modern computer-controlled linacs are comparatively compact and reliable, have a high 
mechanical accuracy and deliver suffi ciently high dose rates. Having become the “work-
horses” of radiation oncology, they have been introduced in nearly every radiotherapy 
department in the world, providing the basis of modern precision radiotherapy.

∑ The next important milestone, which sparked a revolution not only in radiological diag-
nostics but also in radiotherapy, was the invention of X-ray computed tomography (CT). 
Computed tomography was introduced to the radiotherapy process at the end of the 
1970s, and this resulted in 3D computerized treatment planning, now a standard tool 
in all radiotherapy departments.
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∑ The CT-based treatment planning was later supplemented with medical resonance 
imaging (MRI). By combining CT and MRI, and using registered images for radio-
therapy planning, it is now possible to assess tumour morphology more precisely, and 
thus achieve improved defi nition of planning target volumes (PTV), improving both 
percutaneous radiotherapy and brachytherapy.

∑ The computer revolution, characterized by the development of small, powerful and 
inexpensive desktop computers, had tremendous impact on radiation therapy. With 
new tools from 3D computer graphics, implemented in parallel with 3D treatment plan-
ning, it was possible to establish “virtual radiotherapy planning”, a method to plan and 
simulate 3D irradiation techniques. New 3D dose calculation algorithms (e.g. “pencil-
beam algorithms”) made it possible to precalculate the 3D dose distributions with suf-
fi cient accuracy and with acceptable computing times.

∑ With the aforementioned advent of 3D imaging, 3D virtual therapy simulation and 3D 
dose calculation, the preconditions for introducing an individualized, effective local 
radiation treatment of tumours were fulfi lled. What was still missing was the possibil-
ity to transfer the computer plans to the patient with high accuracy. This gap was fi lled 
by the introduction of stereotaxy into radiotherapy in the early 1980s. Prior to this 
development, stereotaxy was used in neurosurgery as a tool to precalculate target points 
in the brain and to precisely guide probes to these target points within the tumour in 
order to take biopsies or implant radioactive seeds. The transfer of this technique to 
radiotherapy resulted in signifi cantly enhanced accuracy in patient positioning and 
adjustment of radiation beams. Stereotactic treatment techniques were fi rst developed 
for single-dose irradiations (called “radiosurgery”), then for fractionated treatments in 
the brain and the head and neck region (“stereotactic radiotherapy”). Later, it became 
possible to transfer stereotactic positioning to extracranial tumour locations (“extra-
cranial stereotactic radiotherapy”) as well. This opened up the possibility for high-pre-
cision treatments of tumours in nearly all organs and locations.

∑ The next important step which revolutionized radiotherapy came again from the fi eld 
of engineering. The development of computerized multi-leaf collimators (MLCs) in the 
middle of the 1980s ensured the clinical breakthrough of 3D conformal radiotherapy. 
With the advent of MLCs, the time-consuming fabrication of irregularly shaped beams 
with cerrobend blocks could be abandoned. Conformal treatments became less expen-
sive and considerably faster, and were applied with increasing frequency. The combi-
nation of 3D treatment planning and 3D conformal beam delivery resulted in safe and 
effi cient treatment techniques, which allowed therapists to escalate tumour doses while 
at the same time lowering the dose in organs at risk and normal tissues.

∑ By the mid 1990s, 3D conformal radiotherapy was supplemented by a new treatment 
technique, which is currently becoming a standard tool in modern clinics: intensity-
modulated radiotherapy (IMRT) using MLC-beam delivery or tomotherapy, in combi-
nation with inverse treatment planning. In IMRT the combination of hardware and soft-
ware techniques solves the problem of irradiating complex target volumes with concave 
parts in the close vicinity of critical structures, a problem with which radio-oncologists 
have had to struggle from the very beginning of radiotherapy. In many modern clinics 
around the world, IMRT is successfully applied, e.g. in the head and neck and in pros-
tate cancer. It has the potential to improve results in many other cancer treatments as 
well.

∑ The IMRT with photon beams can achieve a level of conformity of the dose distribution 
within the target volume which can, from a physical point of view, not be improved 
further; however, the absolute dose which can be delivered to the target volume is still 
limited by the unavoidable irradiation exposure of the surrounding normal tissue. A 
further improvement of this situation is possible by using particle radiation. Compared 
with photon beams, the interaction of particle beams (like protons or heavier charged 
particles) with tissue is completely different. For a single beam, the dose delivered to 
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the patient has a maximum shortly before the end of the range of the particles. This is 
much more favourable compared with photons, where the dose maximum is located just 
2–3 cm below the surface of the patient’s body. By selecting an appropriate energy for 
the particle beams and by scanning particle pencil beams over the whole target volume, 
highly conformal dose distributions can be reached, with a very steep dose fall-off to 
surrounding tissue, and a much lower “dose bath” to the whole irradiated normal tissue 
volume. Furthermore, from the use of heavier charged particles, such as carbon-12 or 
oxygen-16, an increase in RBE can be observed shortly before the end of the range of 
the particles. It is expected that this radiobiological advantage over photons and pro-
tons will result in a further improvement in local control, especially for radioresistant 
tumours. However, particle therapy, both with protons and heavier charged particles, is 
still in the early stages of clinical application and evaluation on a broad scale. Ongoing 
and future clinical trials must demonstrate the benefi t of these promising, but costly, 
particle-beam treatments.

At the beginning of the new millennium, the field of adaptive radiotherapy evolved from 
radio-oncology:
∑ After 3D CT and MRI enabled a much better understanding of tumour morphology, 

and thus spatial delineation of target volumes, the time has arrived where the temporal 
alterations of the target volume can also be assessed and taken into account. Image-
guided and time-adapted radiotherapy (IGRT and ART) are characterized by the inte-
gration of 2D and 3D imaging modalities into the radiotherapy work fl ow. The vision 
is to detect deformations and motion between fractions (inter-fractional IGRT) and 
during irradiation (intra-fractional IGRT), and to correct for these changes either by 
gating or tracking of the irradiation beam. Several companies in medical engineering 
are currently addressing this technical challenge, with the goal of implementing IGRT 
and ART in radiotherapy as a fast, safe and effi cient treatment technique.

∑ Another innovation which is currently on the horizon is biological adaptive radiother-
apy. The old hypothesis that the tumour consists of homogeneous tissue, and therefore 
a homogeneous dose distribution is suffi cient, can no longer be sustained. We now know 
that a tumour may consist of different subvolumes with varying radiobiological proper-
ties. We are trying to characterize these properties more appropriately by functional 
and molecular imaging using new tracers in PET and SPECT imaging and by functional 
MRI (fMRI) and MR spectroscopy, for example. We now have to develop concepts to 
include and integrate this information into radiotherapy planning and beam delivery, 
fi rstly by complementing the morphological gross tumour volume (GTV) by a biologi-
cal target volume (BTV) consisting of subvolumes of varying radioresistance, and sec-
ondly by delivering appropriate inhomogeneous dose distributions with the new tools 
of photon- and particle-IMRT techniques (“dose painting”). Furthermore, biological 
imaging can give additional information concerning tumour extension and tumour 
response to radiotherapy or radiochemotherapy.

Currently, we have reached a point where, besides the 3D tumour morphology, time 
variations and biological variability within the tumour can also be taken into account. The 
repertoire of radiation oncology has thus been expanded tremendously. Tools and methods 
applied to radiotherapy are increasing in number and complexity. The speed of these devel-
opments is sometimes breathtaking, as radiation oncologists are faced more and more with 
the problem of following and understanding these modern innovations in their profession, 
and putting the new developments into practice. This book gives an introduction into the 
aforementioned areas. The authors of the various chapters are specialists from the involved 
disciplines, either working in research and development or in integrating and using the 
new methods in clinical application. The authors endeavoured to explain the very often 
complicated and complex subject matter in an understandable manner. Naturally, such a 
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collection of contributions from a heterogeneous board of authors cannot completely cover 
the whole field of innovations. Some overlap, and variations in the depth of descriptions 
and explanations were unavoidable. We hope that the book will be particularly helpful for 
physicians and medical physicists who are working in radiation oncology or just entering 
the field, and who are trying to achieve an overview and a better understanding of the new 
technologies in radiation oncology.

The motivation to compile this book can be traced back to the editors of the book series 
Medical Radiology/Radiation Oncology, by Michael Molls, Munich, Luther Brady, Philadel-
phia, and Hans-Peter Heilmann, Hamburg. We thank them for continuous encouragement 
and for not losing the belief that the work will eventually be finished. We extend thanks 
to Alan Bellinger, Ursula Davis, Karin Teichmann and Kurt Teichmann, who did such an 
excellent job in preparing the book. Most of all, thanks to all the authors, who wrote their 
chapters according to our suggestions, and a very special thanks to those who did this work 
within the short period of time before the deadline.

Heidelberg Wolfgang Schlegel
Boston Thomas Bortfeld
Munich Anca-Ligia Grosu
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New Technologies in 3D Conformal Radiation Therapy: Introduction and Overview 1

1 New Technologies in 3D Conformal Radiation 
 Therapy: Introduction and Overview

 Wolfgang Schlegel

W. Schlegel, PhD
Professor, Abteilung Medizinische Physik in der Strahlen-
therapie, Deutsches Krebsforschungszentrum, Im Neuen-
heimer Feld 280, 69120 Heidelberg, Germany

1.1 
Clinical Demand for New Technologies in 
Radiotherapy

Radiotherapy is, after surgery, the most successfully 
and most frequently used treatment modality for 
cancer. It is applied in more than 50% of all cancer 
patients.

Radiotherapy aims to deliver a radiation dose to 
the tumor which is high enough to kill all tumor cells. 
That is from the physical and technical point of view 
a diffi cult task, because malignant tumors often are 
located close to radiosensitive organs such as the 
eyes, optic nerves and brain stem, spinal cord, bow-
els, or lung tissue. These so-called organs at risk must 
not be damaged during radiotherapy. The situation is 
even more complicated when the tumor itself is radi-
oresistant and very high doses are needed to reach a 
therapeutic effect.

At the time of being diagnosed, about 60% of all 
tumor patients are suffering from a malignant local-
ized tumor which has not yet disseminated, i.e., no 
metastatic disease has yet occurred; thus, these pa-
tients can be considered to be potentially curable. 
Nevertheless, about one-third of these patients (18% 
of all cancer patients) cannot be cured, because ther-
apy fails to stop tumor growth.

This is the point where new technologies in radia-
tion oncology, especially in 3D conformal radiother-
apy, come into play: it is expected that they will en-
hance local tumor control. In conformal radiotherapy, 
the dose distribution in tissue is shaped in such a way 
that the high-dose region is located in the target vol-
ume, with a maximal therapeutic effect throughout 
the whole volume. In the neighboring healthy tissue, 
the radiation dose has to be kept under the limit for 
radiation damage. This means a steep dose falloff has 
to be reached between the target volume and the sur-
roundings; thus, in radiotherapy there is a rule stat-
ing that with a decrease of dose to healthy tissue, the 
dose delivered to the target volume can be increased; 
moreover, an increase in dose will also result in bet-
ter tumor control (tumor control probability, TCP), 
whereas a decrease in dose to healthy tissue will be 
connected with a decrease in side effects (normal 
tissue complication probability, NTCP). Increase in 
tumor control and a simultaneous decrease in side 
effects means a higher probability of patient cure.

In the past two decades, new technologies in ra-
diation oncology have initiated a signifi cant increase 
in the quality of conformal treatment techniques. 
The development of new technologies for conformal 
radiation therapy is the answer to the wishes and 
guidelines of the radiation oncologists. The ques-
tion of whether clinical improvements are driven by 
new technical developments, or vice versa, should 
be answered in the following way: the development 
of new technologies should be motivated by clinical 
constraints.

In this regard the physicists, engineers, computer 
scientists, and technicians are service providers to 
the radiologists and radiotherapists, and in this con-
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2 W. Schlegel

text new technologies in conformal radiation therapy 
are technical answers to a clinical challenge.

An improvement in one fi eld automatically en-
tails the necessity of an improvement in other fi elds. 
Conformal radiation therapy combines, in the best 
case, the advantages of all new developments.

1.2 
Basic Principles of Conformal Radiotherapy

The basic idea of conformal radiation therapy is easy 
to understand and it is close to being trivial (Fig. 1.1). 
The problem is that depth dose of a homogeneous 
photon fi eld is described by an exponentially de-
creasing function of depth. Dose deposition is nor-
mally higher close to the surface than at the depth 
of the tumor.

To improve this situation normally more than one 
beam is used. Within the overlapping region of the 
beams a higher dose is deposited. If the apertures of 
the beams are tailored (three dimensionally) to the 
shape of the planning target volume (PTV) masking 
the organs at risk (OAR), then the overlapping region 
should fi t the PTV. In the case of an OAR close to the 
PTV, this is not true for such a simple beam confi gu-
ration such as the one shown in Fig. 1.1. In such cases 
one needs a more complex beam confi guration to 
achieve an acceptable dose distribution; however, the 
general thesis is that, using enough beams, it should 
be possible to a certain extent to fi t a homogeneous 

dose distribution to the PTV while sparing the OARs. 
One hopes that the conformity of dose distributions 
can be increased using individually tailored beams 
compared with, for example, a beam arrangement 
using simple rectangular-shaped beams, and for the 
majority of cases this is true. Nevertheless, there are 
cases, especially with concave-shaped target volumes 
and moving targets, where conventional conformal 
treatment planning and delivery techniques fail. It is 
hoped that these problems will be solved using inten-
sity-modulated radiotherapy (IMRT; see Chap. 23) 
and adaptive radiotherapy (ART; see Chaps. 24–26), 
respectively.

1.3 
Clinical Workfl ow in Conformal Radiotherapy

The physical and technical basis of the radiation 
therapy covers different aspects of all links in the 
“chain of radiotherapy” (Fig. 1.2) procedure. All parts 
of the “chain of radiation therapy” are discussed in 
other chapters separately and in great detail, and an 
overview on the structure of this book within this 
context is given in Table 1.1.

Table 1.1 Structure of the book with respect to the chain of 
radiotherapy

Part of the radiotherapy chain Described in chapter

Patient immobilization 21, 22
Imaging and information processing 2–6
Tumor localization 7–11
Treatment planning 13, 14
Patient positioning 12, 21, 22, 26
Treatment 20–28
Quality assurance and verifi cation 32, 33

Target volume

Organ at risk

Do
se

Fig. 1.1. Basic idea of conformal radiotherapy

Fig. 1.2. Chain of radiotherapy. (From Schlegel and Mahr 
2001)
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1.3.1 
Patient Immobilization

It is obvious that a reliable and exact fi xation of the 
irradiated body area or organ is a substantial prereq-
uisite for conformal radiation therapy. Modifi cations 
of the position of the patient relative to the treatment 
machine can lead to dangerous dose errors.

Numerous immobilization devices and techniques 
have been developed for radiotherapy, most of them 
using casts and moulds.

The highest immobilization accuracy is required 
when patients have to be treated with single-dose ir-
radiation under stereotactical boundary conditions 
(see Chaps. 21, 22).

1.3.2 
Imaging and Tumor Localization

Presently tumors and organs at risk are localized 
with 3D imaging techniques. One of the most impor-
tant implicit constraints facing a technician devel-
oping new radiation therapy treatment techniques 
is that the segmented OAR and PTV are identical 
with the true organs and the true tumor. This is 
not a trivial statement, and it is still the subject of 
controversy. It is well known that different observ-
ers, and even the same observer, may create slightly 
different outlines at sequential attempts to defi ne 
OARs and the PTV.

Without doubt, advances in the fi eld of medical 
imaging, especially in the use of computed tomog-
raphy (CT), magnetic resonance imaging (MRI), 
ultrasound (US), and positron emission tomogra-
phy (PET), have led to improved precision in tumor 
localization. In particular, the gross tumor volume 
can be reconstructed in three dimensions from to-
mographic slices, and taken in the tumor region, 
thus forming the basis for 3D treatment planning 
(see Chaps. 2–5, 7, 8). Computed tomography is an 
ideal basis for 3D treatment planning, as it has the 
potential to quantitatively characterize the physi-
cal properties of heterogeneous tissue in terms of 
electron densities which is essential for dose cal-
culation (see Chaps. 15, 16). On the other hand, 
MRI is very often superior to CT, especially for the 
task of differentiating between healthy tissue and 
tumor tissue (see Chap. 9). In addition, MRS and 
PET imaging have the potential to include informa-
tion on tumor metabolism and heteronegeity (see 
Chaps. 10, 11, 13).

1.3.3 
Treatment Planning

Computer-assisted 3D treatment planning can be 
considered as state of the art in most modern hos-
pitals. The planning process can be divided into the 
following steps:

1. Determination of the target volume and organs at 
risk

2. Virtual therapy simulation
3. Dose calculation
4. Visualization and evaluation of dose distributions

The goal of treatment planning is the determina-
tion of a suitable and practicable irradiation technique 
which results in a conformal dose distribution; thus, 
treatment planning is a typical optimization prob-
lem. Whereas in conventional “forward planning” a 
trial-and-error method is applied for interactive plan 
optimization (see Chap. 14), the new method of “in-
verse planning” is able to automatically calculate a 
treatment technique which leads to the best coverage 
of the target volume and suffi cient sparing of healthy 
tissue (see Chap. 17).

1.3.3.1 
Defi ning Target Volumes and Organs at Risk

The best way of determining the PTV and OAR is 
on the basis of multiple-modality 3D image data sets 
such as X-ray computed tomography (CT), magnetic 
resonance (MRI and MRS), and PET. Routinely, X-
ray CT is the most common tomographic imaging 
method (see Chaps. 7–8, 13).

The registration of all these imaging modalities 
for the purpose of defi ning target volumes and or-
gans at risk is highly desirable. Three-dimensional 
image registration is a computer tool which is able to 
match the 3D spatial information of the different im-
aging modalities by use of either external or internal 
anatomic landmarks. The involved methods are de-
scribed in Chap. 5. The problem of target-volume def-
inition using multi-modal imaging techniques from 
the radio-oncologist’s point of view are described in 
Chaps. 10 and 13.

Another problem that is more important, if highly 
conformal dose distributions are delivered, is organ 
movement. It is clear that in conformal therapy organ 
movements cannot be ignored.

Time-adapted radiotherapy is a fi eld which is try-
ing to solve this problem, and some chapters of this 
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book report the approaches which are currently be-
ing investigated (see Chaps. 8, 24–26).

1.3.3.2 
Defi nition of the Treatment Technique

Conformal radiation therapy basically requires 3D-
treatment planning. After delineating the therapy-
relevant structures, various therapy concepts are 
simulated as part of an iterative process. The search 
for “optimal” geometrical irradiation parameters 
– the “irradiation confi guration” – is very complex. 
The beam directions and the respective fi eld shapes 
must be selected. The various possibilities of volume 
visualization, such as Beams Eye View, Observers 
View, or Spherical View, are tools which support the 
radiotherapist with this process (Chap. 14).

1.3.3.3 
Dose Calculation

The quality of treatment planning depends natu-
rally on the accuracy of the dose calculation. An 
error in the dose calculation corresponds to an in-
correct adjustment of the dose distribution to the 
target volume and the organs at risk. The calculation 
of dose distributions has therefore always been a 
special challenge for the developers of treatment-
planning systems.

The problem which has to be solved in this context 
is the implementation of an algorithm which is fast 
enough to fulfi ll the requirements of daily clinical use, 
and which has suffi cient accuracy. Most treatment-
planning systems work with so-called pencil-beam 
algorithms, which are semi-empiric and meet the 
requirements in speed and accuracy (see Chap. 15). 
If too many heterogeneities, such as air cavities, lung 
tissue, or bony structures, are close to the target vol-
ume, the use of Monte Carlo calculations is preferred. 
Monte Carlo calculations simulate the physical rules 
of interaction of radiation with matter in a realistic 
way (see Chap. 16). In the case of heterogeneous tis-
sue they are much more precise, but also much slower, 
than pencil-beam algorithms.

1.3.3.4 
Evaluation of the 3D Dose Distribution

The 3D-treatment planning leads to 3D-dose distri-
butions, which must be evaluated in an appropriate 
way. In particular this concerns the occurrence of hot 
and cold spots, as well as the homogeneity and con-
formity of the dose distribution. Numerous computer 

graphics and mathematical tools have been devel-
oped to support the evaluation of dose distribution.

The weak point in treatment planning still is that 
the evaluation of dose distributions occurs usually on 
the basis of the physical dose distribution and not on 
the basis of quantifi ed radiobiological or clinical ef-
fects. Physical dose is only a surrogate for the effects 
that radiation induces in healthy tissue as well as in 
the target volume. In the context of radiotherapy plan-
ning, it has always been emphasized that radiobio-
logical models to predict normal tissue complication 
probabilities (NTCP) and tumor control probabili-
ties (TCP) would be much better suited to treatment 
planning than the sole consideration of physical dose 
distributions. Unfortunately, lack of clinical data still 
hinders the development of adequate biological plan-
ning algorithms.

Some planning programs permit the calculation 
of values for the TCP and for the NTCP as yardsticks 
for the biological effect of the dose distribution; 
however, radiobiological models are still the topic of 
much controversial discussion (see Chap. 18).

1.4 
Patient Positioning

The fi fth link in the chain of radiotherapy is the link 
between treatment planning and the irradiation, 
the so-called problem of patient positioning. The 
problem here is to accurately transfer the planned 
irradiation technique to the patient. In practice, this 
means that the patient fi rst of all has to be placed in 
exactly the same position as during 3D imaging. This 
is performed with a suitable immobilization device 
which can be used during imaging and treatment. 
Secondly, the treatment couch with the patient has 
to be adjusted until the isocenter position matches 
the pre-calculated coordinates. A variety of differ-
ent techniques are currently used to reach this goal: 
conventionally, X-ray simulators are used to control 
the patient’s position with the use of radiographic 
imaging. In connection with 3D-treatment planning, 
the use of digital reconstructed radiographs (DRRs) 
has been established (see Chaps. 4, 14). More recently, 
stereotactic patient positioning techniques have been 
introduced, techniques which initially could only 
be applied to target volumes in the brain but pres-
ently can also be applied to extracranial targets (see 
Chaps. 21, 22). The most modern approach to patient 
positioning is the use of navigational techniques, 
which offer not only tools to position the patient at 
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the beginning of each fraction but also can moni-
tor movement during irradiation (see Chap. 26). A 
promising approach to the problem of patient posi-
tioning is image-guided therapy (IGRT), where a 2D 
or even 3D X-ray imaging procedure is integrated 
in the irradiation unit, thus offering the possibility 
of controlling and monitoring the position of the 
target volume under treatment (Chaps. 24–26). This 
approach, which has the advantage that the treat-
ment conditions could be dynamically matched to 
a moving and changing target volume, is also called 
adaptive radiotherapy (ART).

1.5 
Treatment

The next and most essential link in the chain of 
radiotherapy, of course, is treatment, itself char-
acterized by radiation delivery. Modern radiother-
apy, especially when there is a curative intention, 
is practiced as 3D conformal radiotherapy. Most 
conformal radiotherapy treatments are performed 
by external radiation with photons, but the obvious 
physical and probably also biological advantages 
of charged particle therapy with proton or carbon 
beams are currently leading to a worldwide in-
creasing number of particle-therapy installations. 
On the other hand, 3D conformal therapy with in-
ternal sources (brachytherapy) has also been es-
tablished and proven to be very efficient for special 
indications.

1.5.1 
Photons

The most common treatment modality presently 
is the use of a high-energy X-ray machine (Linac) 
in conjunction with a conformal irradiation tech-
nique realized by multiple irregular-shaped fi xed 
beams. Beam shaping is often still performed with 
blocks, but computer-controlled multi-leaf collima-
tors (MLCs) are increasingly replacing them. The 
MLCs also have the potential for intensity-modu-
lated radiotherapy (IMRT), which can be considered 
as the most advanced treatment technique of 3D 
conformal radiotherapy with photons. Whereas the 
general aspects of conventional conformal radia-
tion therapy are described briefl y in Chap. 20, IMRT 
techniques are described in Chap. 23 and ART in 
Chaps. 24–26.

1.5.2 
Charged-Particle Therapy

The use of heavier charged particles, such as pro-
tons and 12C, is still restricted to a very limited 
number of centers worldwide. The physical advan-
tages of heavier charged particles are obvious: due 
to the Bragg peak, they result in a favorable dose 
distribution in healthy tissue. 12C beams, which is 
high linear energy transfer  radiation, also seem 
to have radiobiological advantages (see Chaps. 27, 
28). The high costs of charged-particle irradiation 
units are the major hindrance to broader intro-
duction.

1.5.3 
Brachytherapy

The implantation of radioactive sources into tu-
mors has the potential to produce conformal dose 
distributions with a very steep dose gradient to 
neighboring structures and shows an excellent 
sparing effect for normal tissue. Depending on 
the tumor type, it can be applied either in short-
term irradiations (with high dose rates) or in a 
long-term irradiation with radio-emitters at low 
dose rates. In Chaps. 19, the 2D- and 3D-planning 
techniques which are presently applied in modern 
brachytherapy are described, and Chaps. 29–31 de-
scribe clinical applications in vascular and prostate 
brachytherapy.

1.6 
Quality Management in Radiotherapy

All steps and links of the chain of radiotherapy are 
subject to errors and inaccuracies, which may lead 
to treatment failure or injury of the patient. A care-
ful network of quality assurance and verifi cation has 
to be established in a radiotherapy unit in order to 
minimize these risks. A quality management system 
has to cover all the components involved and all 
aspects of the chain, e.g., dosimetry, software and 
hardware testing, standardization, documentation, 
archiving, etc. Three-dimensional conformal radio-
therapy includes medical, biological, mechanical 
and electronic engineering, and computer science, 
as well as mathematical and physical aspects and 
components, and can be considered to be among 
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the most complex and critical medical treatment 
techniques currently available. For this reason, ef-
fi cient quality management is an indispensable re-
quirement for modern 3D conformal radiotherapy 
(see Chaps. 32, 33).
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Röntgen’s contribution to X-ray imaging is a little 
over 100 years old. Although there was early interest 
in the extension of the technique to three dimensions, 
it took more than 70 years for a fi rst prototype. Since 
then, both the scanner technology, reconstruction al-
gorithm, and computer performance have been de-
veloped so signifi cantly that in the near future we can 
expect new techniques with suppressed artefacts in 
the images. Current developments of such methods 
are discussed in this chapter.

2.1 
Problem Setting

We begin with a presentation of the inverse problem: 
Given a set of X-ray projections p of an object, try to 
compute the distribution of attenuation coeffi cients  

µ in this object. We can defi ne the projection func-
tion P: p=P(µ). Formally, reconstruction is therefore 
the calculation of an inverse of P, i.e. µ=P–1(p). This 
inverse need not necessarily exist or, even if it does 
exist, it may be unstable in the sense that small errors 
in the projection data can lead to large deviations in 
the reconstruction.

In order to determine the projection function P 
we have to look at the physical imaging process more 
closely. X-ray projection follows the Lambert-Beer 
law. It describes the attenuation of X-rays penetrat-
ing an object with absorption coeffi cient µ and thick-
ness d. A ray with initial intensity I0 is attenuated to 
I = I0e–µd. If the object’s attenuation varies along the 
ray, one can write I = I0e–∫µ(x)dx, where the integral 
is along the path the ray passes through the object. 
We divide by I0 and take the negative logarithm: 
p = –ln (I/I0) = Úµ(x)dx. Let u(x) describe the contribu-
tion of each volume element (infi nitely small cube) 
to the absorption of the considered ray, the inte-
gral can be written as p  =   Ú

 volume  
µ(x)u(x)dx, where the 

integration is now over the full volume. Discretizing 
the volume, we consider homogenous small cubes 
with a non-vanishing size, each having an absorp-
tion coeffi cient µi ; thus, the integral is replaced by a 
sum reading: p = ∑

i      
µi ui , where ui is a weighting factor. 

Solving for µi requires a set of such equations being 
independent of each other; therefore, n projections 
of size m2 result in n · m2 different rays. For each of 
them   pj = ∑

i      
µi uij which can be rewritten in vector 

format   pÆ   =  U µÆ .  pÆ  describes all n · m2 different rays, 
µÆ  represents the absorption coeffi cients for all dis-
crete volume elements and matrix element (U)ij = uij 
says how much a volume element i contributes to the 
projection result of ray j, i.e. all what we have to do is 
to invert this set of equations, namely  µÆ = U–1 pÆ .

Under certain restrictions imposed on the pro-
jection directions this set of equations is solvable, 
i.e. U–1 exists. A direct calculation of the inverse of 
the matrix U, however, is impossible for present-
day computers due to the extraordinary large 
number of more than 107 variables for typical 
problems. The following methods are, therefore, 
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techniques that allow solving such systems more 
efficiently.

2.2 
Parallel-Beam Reconstruction Using the 
Fourier-Slice Theorem

We start with the simplest case, parallel-beam recon-
struction in two dimensions. To understand how the 
reconstruction is realized, let us assume a circle-like 
object in a rectangular 2D region (Fig. 2.1). The nega-
tive logarithm of the projection data is backprojected 
(or distributed) along the ray direction. This results, 
as seen in Fig. 2.2, in a rough approximation of the 
object. The projection data are smoothed and proc-
essed by a special fi lter (Fig. 2.3). It has the property 
that all contributions accumulate where the object is 
located and around the object negative and positive 
contributions cancel out.

Parallel-beam reconstruction belongs to the 
fi rst approaches used for CT (Cormack 1963; 
Hounsfi eld 1973). A signifi cant increase in scan-
ning time was subsequently achieved by fan-beam 
confi gurations.

2.3 
Fan-Beam Reconstruction

Fan-beam CT reduces scanning times since it cap-
tures a full scanline in parallel. Nevertheless, the 
parallel-beam reconstruction technique can be used 
as well, since individual parallel rays can be selected 
from each fan and considered as a parallel projection 
(as shown in Fig. 2.5). In order to fi nd enough paral-

Fig. 2.1. Left: projection data from point like object. Right: 
backprojection of –log(I/I0)

Fig. 2.2. Simulated backprojection for 
18 projections (left) and 72 projections 
(right)

Fig. 2.3. Result for backprojection 
with fi ltering (360 projections); right: 
the fi lter. (From Chang and Herman 
1980)
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lel rays, a suffi cient number of projections covering 
180°+ fan-beam angle is required.

Fan-beam CT was used for a long time until in 
the 1990s KALENDER invented the spiral CT, i.e. a fan-
beam CT where the table is shifted with constant 
speed through the gantry so that the X-ray source 
follows a screw line around the patient (Kalender 
et al. 1990).

2.4 
Reconstruction Methods of Spiral CT

For spiral CT the projection lines do not lie in paral-
lel planes as for fan-beam CT. Linear interpolation 
of the captured data on parallel planes allows use of 
the fan-beam reconstruction method. Data required 
for interpolation may come from either projections 
being 360 or 180° apart where the latter yields a bet-
ter resolution.

In recent years, CT exams with several detector 
lines have been introduced reducing the overall scan-
ning time for whole-body scans. Despite the diver-
gence of the rays in different detector rows, standard 
reconstruction techniques are used. Recently, further 
developments have reconstructed optimally adapted 
oblique reconstruction planes that are later interpo-
lated into a set of parallel slices (Kachelriess et al. 
2000).

2.5 
Cone-Beam Reconstruction

For cone-beam reconstruction we differentiate be-
tween exact methods, direct approximations, and 
iterative approximations.

2.5.1 
Exact Methods

Exact reconstruction algorithms have been devel-
oped (Grangeat 1991; Defrise and Clack 1994; 
Kudo and Saito 1994), but they currently do not play 
a role in practice due to the long reconstruction time 
and high memory consumption. Cone-beam recon-
struction imposes constraints on the motion of the 
source-detector combination around the patient. As 
shown in Fig. 2.6, a pure rotation around the patient 
does not deliver information about all regions and 
therefore a correct reconstruction is not possible; 
however, trajectories, as shown in Fig. 2.7, for exam-
ple, solve this problem (Tam et al. 1998).

2.5.2 
Filtered Backprojection for Cone Beams

In fi ltered backprojection (FBP) the projection data is 
fi ltered with an appropriate fi lter mask, backprojected 
and fi nally accumulated (Feldkamp et al. 1984; Yan 
and Leahy 1992; Schaller et al. 1997). For small 
cone-beam angles fairly good results are obtained, 
but for larger angles the conditions for parallel beams 
are violated leading to typical artefacts. Nevertheless, 
fi ltered backprojection is currently the standard for 
commercial cone-beam systems (Euler et al. 2000). 
From the computational point of view, FBP is more 
time-consuming compared with the parallel beam, 
fan beam, or spiral reconstruction since the latter 
use the Fourier transform to solve backprojection 

Fig. 2.4. Results on simulated data. Shepp-Logan phantom 
(Shepp and Logan 1974; left), fi ltered backprojection result 
for 360 projections (right)

Fig. 2.5. Three different fan-beam projections are shown 
[shown as triangles with different colours; circles denote the 
X-ray sources (1–3)]. We identify three approximately parallel 
rays in the three projections shown as green, violet, and blue. 
These could be interpreted as a selection of three rays of a 
parallel projection arrangement.
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fast. Although fast FBP implementations exist (Toft 
1996), they do not reach a similar reconstruction 
quality.

2.6 
Iterative Approaches

Filtered backprojection can be characterized as an 
example of direct inversion techniques. For partic-
ularly good reconstruction quality FBP is not the 
method of choice since it can produce severe artefacts 
especially in the case of the presence of high-contrast 
objects or a small number of projection data. Iterative 
techniques promise better reconstructions.

2.6.1 
Algebraic Reconstruction Techniques

The algebraic reconstruction technique (ART; 
Gordon et al. 1970) is one of the fi rst approaches to 
solve the reconstruction problem using an iterative 
method. The basic idea is to start with an a priori 
guess about the density distribution. The density is 
often assumed to be zero everywhere. Next, the simu-

Fig. 2.6. Using only a circular path about the object, one is not 
able to reconstruct parts of the volume.

Fig. 2.7. Source detector motion that allows reconstructing the 
volume for cone beam confi gurations

Fig. 2.8 Result of a reconstruction using 
fi ltered backprojection. One hundred 
twenty projections of size 512×512
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lated projection is calculated and compared with the 
acquired projection data. The error is backprojected 
(without fi ltering) and then accumulated from each 
projection leading to an improved guess. Iteratively 
applying this course of simulated projection, error 
calculation and error backprojection, the algorithm 
converges towards the most likely solution.

There are different implementations. The original 
ART operates on a ray-to-ray basis, i.e. the projection 
image of a single ray is calculated, then the error is 
determined and is fi nally backprojected to correct 
the volume. In the simultaneous iterative reconstruc-
tion technique (SIRT) the error is considered in all 
projections simultaneously. SART (Andersen and 

Kak 1984) can be seen as a combination of ART and 
SIRT. It uses a more accurate algorithm for the simu-
lated projection and a heuristic to emphasize correc-
tions near the center of a ray.

2.6.2 
Expectation Maximization Technique

Expectation maximization (EM; Lange and Carson 
1984) is based on a statistical description of the imag-
ing process. It considers the noise distribution in the 
image and tries to fi nd a solution that generates the 
observed result with maximum probability. Ordered 

Fig. 2.9. Example of simultaneous iterative 
reconstruction technique reconstructions 
on a phantom, 36 projections (512×512), 30 
iterations

Fig. 2.10. Ordered-subsets expectation max-
imization result: 36 projections (512×512); 
three subsets (12 projections in subset); and 
3 iterations
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subset methods where a subset of all projections for 
each iteration step is chosen (Hudson and Larkin 
1994; Hsiao et al. 2002) can speed up convergence by 
a factor of approximately 10, although this is not as 
fast as SIRT or SART.

2.7 
Regularization Techniques

Iterative approaches, at best, yield a maximum-likeli-
hood solution. This is a solution, given only the in-
formation about the physical process of imaging and 
the data, which describes the most probable density 
distribution of physical parameters. In many cases, 
however, one has additional knowledge about the ob-
ject to be imaged. For example, restrictions can be 
imposed on the size of the object and the maximal, 
minimal or average X-ray density; there may also be 
an a priori data set, etc. Including this information in 
the reconstruction process can substantially increase 
the reconstruction quality and accuracy.

Let us refer to the reconstruction problem as de-
scribed above: Given the function (matrix) that de-
scribes the physical imaging process, U, fi nd the den-
sity distribution  µÆ  so that the error E(µÆ )=( µÆ – U pÆ )2 
is minimal. This is the least-square approximation. 
A regularization modifi es this function by adding a 
regularization function R(µÆ): E(µÆ) = ( pÆ – U µÆ)2+aR(µÆ), 
where a is a coupling constant that has to be chosen 
manually.

Finding suited regularization functions is a diffi -
cult task (YU and Fessler 2002). Simple examples are 
Tikhonov regularizations (Tikhonov et al. 1997), 
where R(µÆ) has been chosen as the scalar product 
[L(µ-µ*)]·[L(µ-µ*)], where L is typically either the 
identity matrix or the discrete approximation of the 
derivative operator and µ* is the a priori distribution 
of the absorption coeffi cient. More advanced and re-
cent techniques are impulse-noise priors (Donoho et 
al. 1992; Qi and Leahy 2000), Markov random-fi elds 
priors (Geman and Yang 1995; Villain et al. 2003) 
and total variation regularization (Rudin et al. 1992; 
Persson et al. 2001).

2.8 
Hardware Acceleration

2.8.1 
Parallelization

One of the signifi cant disadvantages of the cone-
beam reconstruction technique is the high compu-
tational demands preventing use in daily practice; 
therefore, parallelization has been a natural means 
for acceleration. The naive approach is to subdivide 
the volume into small subvolumes, assign each sub-
volume to one processor and then compute simulated 
projection and backprojection locally. Since the pro-
jection result is combined by the partial projection 
results from all subvolumes, processors have to send 
their intermediate results to a central node where the 
fi nal projection is generated and then distributed to 
all other processors again. Current parallel comput-
ers are generally limited for this sort of processing by 
their network bandwidth. In other words, the proc-
essors process the data faster than the network can 
transmit the results to other processors; therefore, 
parallelization is not very attractive. There are, how-
ever, two new upcoming technologies that promise 
a solution.

2.8.2 
Field Programmable Gate Arrays

Field programmable gate arrays are chips where the 
internal structure can be confi gured to any hardware 
logic, e.g. some sort of CPU or, which is interesting in 
our application, to a special-purpose processor. The 
main advantage is that recent chips have hundreds 
of multipliers and several million logic elements that 
can be confi gured as switches, adders or memory. 
Recently, it has been demonstrated that these systems 
can be more than ten times faster than a normal 
PC for backprojection, and this factor will grow over 
the next few years since the amount of computing 
resources grows faster than the performance of CPUs 
(Stsepankou et al. 2003).

2.8.3 
Graphics Accelerators

Graphics cards contain special-purpose processors 
optimized for 3D graphics and that internally have 
the processing power which is much higher than that 
of normal PCs. Internal graphics can now be pro-
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grammed by a C-like language. This opens the op-
portunity to implement projection (using so-called 
texture mapping) and backprojection on them. While 
projection is relatively fast (since it is similar to 3D 
graphics algorithms), backprojection is still the limi-
tation where currently the performance of standard 
PCs is achieved (Cabral et al. 1994; Mueller 1998; 
Chidlow and Möller 2003). Since the internal per-
formance of graphics chips grows much faster than 
for normal CPUs, it is foreseeable that in the future 
these accelerators will be a good candidate for imple-
mentation of the advanced reconstruction algorithms 
and, therefore, will allow their use in practice.

2.9 
Outlook

In the past few years, with the advent of high-perform-
ance PCs, the aspect of reconstruction has become 
increasingly important in medicine. We have seen 
that from the current state of the art of cone-beam 
CT there exist already reconstruction algorithms that 
promise fewer visible artefacts and a reduction of the 
required dose for obtaining a given image quality. 
Most of these algorithms are of iterative nature, par-
tially including regularization techniques based on a 
priori knowledge. Due to the current hardware de-
velopments and the ever-increasing speed of normal 
CPUs in PCs, these techniques will fi nd their way into 
practice in the next few years and may revolutionize 
the way 3D volumes are generated. Normal X-ray sys-
tems may therefore be considered for confi guration 
as CT devices, as they are much more cost-effective 
and more fl exible in practice.
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3.1 
Introduction

For a very long time, ranging approximately from 
early trepanizations of heads in Neolithic ages until 
little more than 100 years ago, the basic principles of 
medical practice did not change signifi cantly. The ap-
plication of X-rays for gathering images from the body 
interior marked a major milestone in the history of 
medicine and introduced a paradigm change in the 
way humans understood and practiced medicine.

The revolution introduced by medical imaging is 
still evolving. After X-rays, several other modalities 
have been developed allowing us new, different, and 
more complete views of the body interior: tomogra-
phy (CT, MR) gives a very precise anatomically clear 
view and allows localization in space; nuclear medi-
cine gives images of metabolism; ultrasound and in-
version recovery imaging enable non-invasive imag-
ing; and there are many others.

All these magnifi cent innovations have one thing 
in common: they provide images as primary informa-
tion, thus allowing us to literally “see things” and to 
capitalize from the unmatched capabilities of our vi-

CONTENTS

3.1 Introduction 17
3.2 Pre-processing 18
3.3 Segmentation 20
3.3.1 Classifi cation 20
3.3.2 Edge Detection 22
3.3.3 2.5-D Boundary Tracking 22
3.3.4 Geodesic Active Contours 23
3.3.5 Extraction of Tubular Objects 24
3.3.6 Atlas Registration 24
3.3.7 Interactive Segmentation 25
 References 25

sual system. On the other hand, the increasing number 
of images produces also a complexity bottleneck: it 
becomes continuously more and more diffi cult to han-
dle, correlate, understand, and archive all the different 
views delivered by the various imaging modalities.

Computer graphics as an enabling technology is 
the key and the answer to this problem. With increas-
ing power of even moderate desktop computers, the 
present imaging methods are able to handle the com-
plexity and huge data volume generated by these im-
aging modalities.

While in the past images were typically two-di-
mensional – be they X-rays, CT slices or ultrasound 
scans – there has been a shift towards reproducing the 
three-dimensionality of human organs. This trend has 
been supported above all by the new role of surgeons 
as imaging users who, unlike radiologists (who have 
practiced “abstract 2D thinking” for years), must fi nd 
their way around complicated structures and navigate 
within the body (Hildebrand et al. 1996).

Modern computers are used to generate 3D recon-
structions of organs using 2D data. Increasing computer 
power, falling prices, and general availability have al-
ready established such systems as the present standard 
in medicine. Legislators have also recognized this fact. 
In the future, medical software may be used (e.g. com-
mercially sold) in Europe only if it displays a CE mark 
in compliance with legal regulations (MDD, MPG). To 
this end, developers and manufacturers must carry out 
a risk analysis in accordance with EN 60601-1-4 and 
must validate their software. As soon as software is 
used with humans, this is true also for research groups, 
who desire to disseminate their work for clinical use, 
even if they do not have commercial ambitions.

The whole process leading from images to 3D 
views can be organized as a pipeline. An overview of 
the volume visualization pipeline as presented in this 
chapter and in Chap. 4 is shown in Fig. 3.1. After the 
acquisition of one or more series of tomographic im-
ages, the data usually undergo some pre-processing 
such as image fi ltering, interpolation, and image fu-
sion, if data from several sources are to be used. From 
this point, one of several paths may be followed.
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The more traditional surface-extraction methods 
fi rst create an intermediate surface representation of the 
objects to be shown. It can then be rendered with any 
standard computer-graphics utilities. More recently, di-
rect volume-visualization methods have been developed 
which create 3D views directly from the volume data. 
These methods use the full image intensity informa-
tion (gray levels) to render surfaces, cuts, or transparent 
and semi-transparent volumes. They may or may not 
include an explicit segmentation step for the identifi ca-
tion and labeling of the objects to be rendered.

Extensions to the volume visualization pipeline 
not shown in Fig. 3.1, but covered herein, include the 
visualization of transformed data and intelligent vi-
sualization.

3.2 
Pre-processing

The data we consider usually comes as a spatial se-
quence of 2D cross-sectional images. When they are 
put on top of each other, a contiguous image volume is 
obtained. The resulting data structure is an orthogonal 
3D array of volume elements or voxels each represent-
ing an intensity value, equivalent to picture elements 
or pixels in 2D. This data structure is called the voxel 

model. In addition to intensity information, each voxel 
may also contain labels, describing its membership 
to various objects, and/or data from different sources 
(generalized voxel model; Höhne et al. 1990).

Many algorithms for volume visualization work 
on isotropic volumes where the voxel spacing is equal 
in all three dimensions. In practice, however, only 
very few data sets have this property, especially for 
CT. In these cases, the missing information has to be 
approximated in an interpolation step. A very simple 
method is linear interpolation of the intensities be-
tween adjacent images. Higher-order functions, such 
as splines, usually yield better results for fi ne details 
(Marschner and Lobb 1994; Möller et al. 1997).

In windowing techniques only a part of the image 
depth values is displayed with the available gray val-
ues. The term “window” refers to the range of CT num-
bers which are displayed each time (Hemmingsson 
et al. 1980; Warren et al. 1982). This window can be 
moved along the whole range of depth values of the 
image, displaying each time different tissue types in 
the full range of the gray scale achieving this way bet-
ter image contrast and/or focusing on material with 
specifi c characteristics (Fig. 3.2). The new brightness 
value of the pixel Gv is given by the formula:

min
minmax )( GvWsWl
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GvGvGv +−⋅⎟
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−
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Fig. 3.1. The general organisation of processing, segmentation and visualisation steps
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where [Gvmax, Gvmin], is the gray-level range, [Ws, We] 
defi nes the window width, and Wl the window center. 
This is the simplest case of image windowing. Often, 
depending on the application, the window might have 
more complicated forms such as double window, bro-
ken window, or non-linear windows (exponential or 
sinusoid or the like).

The sharpening when applied to an image aims 
to decrease the image blurring and enhance image 
edges. Among the most important sharpening meth-
ods, high-emphasis masks, unsharp masking, and 
high-pass fi ltering (Fig. 3.3) should be considered.

There are two ways to apply these fi lters on the im-
age: (a) in the spatial domain using the convolution 
process and the appropriate masks; and (b) in the fre-
quency domain using high-pass fi lters.

Generally, fi lters implemented in the spatial do-
main are faster and more intuitive to implement, 
whereas fi lters in the frequency domain require prior 
transformation of the original, e.g., by means of the 
Fourier transformation. Frequency domain imple-

mentations offer benefi ts for large data sets (3D vol-
umes), whereas special domain implementations are 
preferred for processing single images.

Image-smoothing techniques are used in image 
processing to reduce noise. Usually in medical imag-
ing the noise is distributed statistically and it exists in 
high frequencies; therefore, it can be stated that im-
age-smoothing fi lters are low-pass fi lters. The draw-
back of applying a smoothing fi lter is the simultane-
ous reduction of useful information, mainly detail 
features, which also exist in high frequencies (Sonka 
et al. 1998).

Typical fi lters (Fig. 3.4) here include averaging 
masks as well as Gaussian and median fi ltering. 
Averaging and Gaussian fi ltering tend to reduce the 
sharpness of edges, whereas median fi lters preserve 
edge sharpness. Smoothing fi lters are typically imple-
mented in the spatial domain.

In MRI, another obstacle may be low-frequency 
intensity inhomogeneities, which can be corrected to 
some extent (Arnold et al. 2001).

Fig. 3.2. by applying different windowing techniques different aspects of the same volume can be emphasized

Fig. 3.3. Original CT slice (left) 
and contour extraction (right)
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3.3 
Segmentation

An image volume usually represents a large number 
of different structures obscuring each other. To dis-
play a particular one, we thus have to decide which 
parts of the volume we want to use or ignore. A fi rst 
step is to partition the image volume into different re-
gions, which are homogeneous with respect to some 
formal criteria and correspond to real (anatomical) 
objects. This process is called segmentation. In a 
subsequent interpretation step, the regions may be 
identifi ed and labeled with meaningful terms such 
as “white matter” or “ventricle.” While segmentation 
is easy for a human expert, it has turned out to be an 
extremely diffi cult task for the computer.

All segmentation methods can be characterized 
as being either binary or fuzzy, corresponding to 
the principles of binary and fuzzy logic, respectively 
(Winston 1992). In binary segmentation, the ques-
tion of whether a voxel belongs to a certain region 
is always answered by either yes or no. This infor-
mation is a prerequisite, e.g., for creating surface 
representations from volume data. As a drawback, 
uncertainty or cases where an object takes up only 
a fraction of a voxel (partial-volume effect) can-
not be handled properly. Strict yes/no decisions 
are avoided in fuzzy segmentation, where a set of 
probabilities is assigned to every voxel, indicating 
the evidence for different materials. Fuzzy segmen-
tation is closely related to the direct volume-render-
ing methods (see below).

Following is a selection of the most common seg-
mentation methods used for volume visualization, 
ranging from classifi cation and edge detection to 
recent approaches such as snakes, atlas registration, 
and interactive segmentation. In practice, these basic 
approaches are often combined. For further read-
ing, the excellent survey on medical image analysis 
(Duncan and Ayache 2000) is recommended.

3.3.1 
Classifi cation

A straightforward approach to segmentation is to 
classify a voxel depending on its intensity, no matter 
where it is located. A very simple but nevertheless im-
portant example is thresholding: a certain intensity 
range is specifi ed with lower and upper threshold val-
ues. A voxel belongs to the selected class if – and only 
if – its intensity level is within the specifi ed range. 
Thresholding is the method of choice for selecting 
air, bone or soft tissue in CT. In direct volume visu-
alization, it is often performed during the rendering 
process itself so that no explicit segmentation step is 
required. Image 3.5 gives such an example.

Instead of a binary decision based on a threshold, 
Drebin et al. use a fuzzy maximum likelihood classi-
fi er which estimates the percentages of the different 
materials represented in a voxel, according to Bayes’ 
rule (Drebin et al. 1988). This method requires that 
the gray-level distributions of different materials be 
different from each other and known in advance.

A similar method is the region growing algorithm 
and its numerous derivates (Zucker et al. 1976). In 
this case the user has to select a point within a struc-
ture, which is regarded to be “characteristic” for the 
structure of interest. The algorithm compares the 
selected point with its “neighbors.” If a pre-defi ned 
similarity criterion is fulfi lled, the checked neighbor 
is accepted as new member of the data set and be-
comes himself a new seed point. The points selected 
by this method form a set, which grows to the point 
where no similar neighbors can be found – then the 
algorithm terminates. 

There are numerous variations of this principal 
idea, which works equally in 2D and 3D space. The 
principal problem of this method consists in identi-
fying neighbors with “similar”, but not “good” simi-
larity, a case common in medical imaging. In this case 
the growing process stops too early. In the opposite 

Fig. 3.4. CT image of a 
head (left: original image, 
right: after applying a 
median fi lter of size 7¥7)
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site, a “leakage” on the boundary of the segmented 
object immediately creates parasitic branches or 
whole structures, which obviously do not belong to 
the structure of interest. Additional constrains can 
be used for reducing this effect. A common one is to 
require a “smoothness” or a “continuity” of the gen-
erated region, such as continuity in curvature. Image 
3.6 displays such an example: starting from a central 
point in the middle, the algorithm grows until it fi nds 
secure points, in this case the bone boundary in the 
upper and lower image half. The uncertain parts to 
the left and right are interpolated (middle) by requir-
ing a concave shape connecting the upper and the 
lower boundary segments. A snake-approach can be 
user here, see also paragraph 3.3.2 below. Similarly 
“gaps” between vertebral bodies in 3D space can be 
interpolated as well.

Simple classifi cation schemes are not suitable if 
the structures in question have mostly overlapping 
or even identical gray-level distributions, such as 
different soft tissues from CT or MRI. Segmentation 
becomes easier if multi-spectral images are avail-

able, such as T1- and T2-weighted images in MRI, 
emphasizing fat and water, respectively. In this case, 
individual threshold values can be specifi ed for ev-
ery parameter. To generalize this concept, voxels in 
an n-parameter data set can be considered as n-di-
mensional vectors in an n-dimensional feature space. 
This feature space is partitioned into subspaces, rep-
resenting different tissue classes or organs. This is 
called the training phase: in supervised training, the 
partition is derived from feature vectors, which are 
known to represent particular tissues (Cline et al. 
1990; Pommert et al. 2001). In unsupervised training, 
the partition is generated automatically (Gerig et al. 
1992). In the subsequent test phase, a voxel is classi-
fi ed, according to the position of its feature vector in 
the partitioned feature space.

With especially adapted image-acquisition proce-
dures, classifi cation methods have successfully been 
applied to considerable numbers of two- or three-
parametric MRI data volumes (Cline et al. 1990; 
Gerig et al. 1992). Quite frequently, however, isolated 
voxels or small regions are classifi ed incorrectly such 

Fig. 3.5. CT thoracic data set (left: original axial image, middle: axial image after thresholding, right: direct volume rendered 
3D view after thresholding)

Fig. 3.6. 2D based segmentation. In case of homogeneous objects (right) and extension to 3D space is straight-forward
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as subcutaneous fat in the same class as white matter. 
To eliminate these errors, a connected components 
analysis may be carried out to determine whether the 
voxels which have been classifi ed as belonging to the 
same class are part of the same (connected) region. If 
not, some of the regions may be discarded.

Instead of intensity values alone, tissue textures 
may be considered, which are determined using local 
intensity distributions (Saeed et al. 1997). A survey 
of intensity-based classifi cation methods is presented 
by Clarke et al. (1995).

3.3.2 
Edge Detection

Another classic approach to segmentation is the de-
tection of edges, using fi rst or second derivatives of 
the 3D intensity function. These edges (in 3D, they are 
actually surfaces; it is, however, common to refer to 
them as edges) are assumed to represent the borders 
between different tissues or organs.

There has been much debate over what operator 
is most suitable for this purpose. The Canny opera-
tor locates the maxima of the fi rst derivative (Canny 
1986). While the edges found with this operator are 
very accurately placed, all operators using the fi rst 
derivative share the drawback that the detected con-
tours are usually not closed, i.e., they do not separate 
different regions properly. An alternative approach is 
to detect the zero crossings of the second derivative. 
With a 3D extension of the Marr-Hildreth operator, 
the complete human brain was segmented and vi-
sualized from MRI for the fi rst time (Bomans et al. 
1987). A free parameter of the Marr-Hildreth opera-

tor has to be adjusted to fi nd a good balance between 
under- and oversegmentation.

Snakes (Kass et al. 1987) are 2D image curves that 
are adjusted from an initial approximation to im-
age features by a movement of the curve caused by 
simulated forces (Fig. 3.7). Image features produce 
the so-called external force. An internal tension of 
the curve resists against highly angled curvatures, 
which makes the Snakes’ movement robust against 
noise. After a starting position is given, the snake 
adapts itself to an image by relaxation to the equi-
librium of the external force and internal tension. 
To calculate the forces an external energy has to be 
defi ned. The gradient of this energy is proportional 
to the external force. The segmentation by Snakes is 
due to its 2D defi nition performed in a slice-by-slice 
manner, i.e., the resulting curves for a slice are cop-
ied into the neighboring slice and the minimization 
is started again. The user may control the segmenta-
tion process, by stopping the automatic tracking, if 
the curves run out of the contours and defi ne a new 
initial curve.

3.3.3 
2.5-D Boundary Tracking

The main drawback of the above-mentioned method 
is its typical limitation to 2D structures; thus, the 
snakes (Fig. 3.8) work well on a plane image but do 
not capitalize from the principal coherence of struc-
tures in the 3D space. The “boundary tracking” (BT) 
algorithm tries to encompass this diffi culty. The main 
assumption of BT is that the shape of an organ does 
not change signifi cantly between adjacent slices; thus, 

Fig. 3.7. The principle of segmentation using Snakes. The spinal canal in the left image has been correctly identifi ed, whereas 
in the middle and the right examples the algorithm tracked the wrong boundary!
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a contour found on one slice can be copied in the 
subsequent one as a reasonable approximation of the 
new shape. The snake algorithm is then re-started in 
order to fi ne-tune and adjust this initial approxima-
tion on the new slice until the whole data set has been 
processed (Herman 1991).

The quality of the result depends fundamentally 
on the similarity of two adjacent slices. Normally, this 
varies within a data set. This can be partly compen-
sated by re-estimating the initial value for each new-
segmented shape. However, this is not always possi-
ble; therefore, in regions with low similarity, the slices 
to be segmented by the interactive method must be 
selected tightly.

An alternative method is a combination of 2D 
and 3D approach. The segmentation approach 
works at one image level at a time in order to fi nd 
a local contour, and once this has been done, the 
found structure “jumps” on the next slice in the vol-
ume. In the case of tomographic modalities, such as 
CT and MRI, the algorithm is applied on the origi-
nal (axial) cross-sectional images. The algorithm 
requires an initial point to start the tracing of the 
edge of the object under investigation. The initial 
point travels to the vertical or horizontal direction 
until and edge of the investigated object is reached 
(region growing). Then the algorithm will start to 
exam the surrounding pixel of that edge and check 
whether they belong to the current edge or not. 
The algorithm uses a constant threshold selection. 
Once the shape is fi lled, the “mid-point” (center of 
gravity for convex shapes, center of largest included 

ellipse for concave ones) of the shape is copied as 
the starting value on the next slice and the process 
starts again. If on the slice under investigation a 
shape fulfi lling the constrains can not be found, the 
slice is temporally ignored and the same process is 
applied on the next slice etc. When a valid contour 
is found, intermediate shapes for the ignored slices 
are calculated by shape interpolation and the gap 
is fi lled, in other case the algorithm terminates. 
This process has been used in the example of fi gure 
3.6 for 3D-segmentation of the spinal canal on the 
right image.

The main drawback of the BT is that it is a binary 
approach and hence is very sensitive to gray-value 
variations. If the threshold value is not selected prop-
erly, the system will fail to detect the appropriate 
shape. An error that usually occurs is when the user 
attempts to defi ne the starting point for the algo-
rithm: e.g. selecting a good point is possible on image 
3.6 left, but impossible in the middle slice. Due to the 
restrictions of the BT mentioned above, in this case 
it is not possible to initialize the tracing process from 
an arbitrary slice. Due to this limitation, the user 
must be trained under the trial-and-error principle 
until the desired contour is found.

3.3.4 
Geodesic Active Contours

Generally, geodesic active contours (GAC) is based 
on fast marching and level sets. The GAC expects two 
inputs, the initial level set (zero level set) and a feature 
image (edge image), and works in 2D and 3D data 
sets. Following the forces defi ned by the edge image, 
the level set iteratively approximates the area to be 
segmented. The result is binarized by thresholding 
and the binary image is overlapped in the 2D view. 
The processing of the original MR images is sche-
matically described in Fig. 3.9. Usually an anisotropic 
diffusion fi lter is used to reduce noise in MR images. 
A sigmoid fi lter for contrast enhancement shows the 
interesting edges. After a gradient-magnitude (edge 
detection) fi lter, a second sigmoid fi lter is used to 
inverse the image.

In addition to this automated image pre-process-
ing, a number of seed points have to be selected in the 
data. Approximately 10–15 seed points located within 
the liver are used in this example. These seed points 
can be placed within one or more slices. In addition, 
we generate a potential distance map around each 
image contour. With these two inputs a fast-marching 
algorithm is started generating all level sets, includ-

Fig. 3.8. Adaptation of a snake on one slice and propagation 
to the next slice
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ing the zero level set, which is used for the starting 
point called initial level set. The process is described 
in detail in Caselles (1997).

3.3.5 
Extraction of Tubular Objects

For the segmentation of tubular objects, such as ves-
sels, specialized segmentation algorithms have been 
developed (Kirbas et al. 2003). These techniques 
take into account the geometrical structure of the 
objects that have to be segmented. Besides con-
ventional approaches, such as pattern-recognition 
techniques (e.g., region growing, mathematical mor-
phology schemes), or model-based approaches (e.g., 
deformable models, generalized cylinders) there is 
the group of tracking-based algorithms. The latter 
ones start usually from a user-given initial point and 
detect the center line and the boundaries by fi nding 
edges among the voxels orthogonal to the tracking 
direction. Prior to the segmentation step, the data 
are pre-processed for lowering noise and enhanc-
ing edges within the image. The most sophisticated 
tracking-based algorithms generate a twofold output, 
the center line as well as the boundaries of the tubular 
object (Fig. 3.10), allowing for a further analysis of 
the segmented structure. That output may be gener-

ated in a single step (Verdonck et al. 1995) or in an 
iterative manner where fi rst an approximate estima-
tion of the center line is computed and afterwards 
corrected repeatedly by detecting the boundaries 
orthogonal to that line (Wesarg et al. 2004).

3.3.6 
Atlas Registration

A more explicit representation of prior knowledge 
about object shape are anatomical atlases (see be-
low). Segmentation is based on the registration of 
the image volume under consideration with a pre-
labeled volume that serves as a target atlas. Once 
the registration parameters are estimated, the inverse 
transformation is used to map the anatomical labels 
back on to the image volume, thus achieving the seg-
mentation.

In general, these atlases do not represent one in-
dividual – but “normal” –anatomy and its variability 
in terms of a probabilistic spatial distribution, ob-
tained from numerous cases. Methods based on atlas 
registration were reported suitable for the automatic 
segmentation of various brain structures, including 
lesions and objects poorly defi ned in the image data 
(Arata et al. 1995; Collins et al. 1999; Kikinis et 
al. 1996); however, registration may not be very ac-

Sigmoid 1 Gradient Magnitude Anisotropic Diffusion Original Image 

Feature Image 

Binary Threshold 

Intial Level Set 

Geodesic Active Contours 

3D Views 

Fig. 3.9. Result of a liver segmentation based on MRI. Fast marching produces the initial level set and the GAC algorithm seg-
ments the contour of the liver.
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Fig. 3.10. Tracking-based segmentation of coronary arteries in cardiac CT data sets (left: vessel boundary, right: colour-coded 
centreline corresponding to the vessel’s diameter)

Fig. 3.11. Results of interactive segmentation of MRI (skin, 
brain) and Magnetic Resonance Angiography (vessels) data.

curate. For improved results, atlas registration may 
be complemented with intensity-based classifi cation 
(Collins et al. 1999).

3.3.7 Interactive Segmentation

Even though there are a great variety of promising 
approaches for automatic segmentation, “… no one 
algorithm can robustly segment a variety of relevant 
structures in medical images over a range of datas-
ets” (Duncan and Ayache 2000). In particular, the 
underlying model assumptions may not be fl exible 
enough to handle various pathologies; therefore, there 
is currently a strong tendency to combine simple, but 
fast, operations carried out by the computer with the 
unsurpassed recognition capabilities of the human 
observer (Olabarriaga and Smeulders 2001).

A practical interactive segmentation system was 
developed by Höhne and Hanson (1992) and later 
extended to handle multiparametric data (Pommert 
et al. 2001; Schiemann et al. 1997). Regions are ini-
tially defi ned with thresholds. The user can subse-
quently apply connected components analysis, vol-
ume editing tools, or operators from mathematical 
morphology. Segmentation results are immediately 
visualized on orthogonal cross-sections and 3D im-
ages in such a way that they may be corrected or fur-
ther refi ned in the next step. With this system, seg-
mentation of gross structures is usually a matter of 
minutes (Fig. 3.11).
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4.1 
Introduction

After segmentation, the choice of which rendering 
technique to use must be made. The more traditional 
surface-based methods fi rst create an intermediate 
surface representation of the object to be shown. It 
may then be rendered with any standard computer 
graphics method. More recently, volume-based meth-
ods have been developed which create a 3D view di-
rectly from the volume data. These methods use the 
full gray-level information to render surfaces, cuts, 
or transparent and semi-transparent volumes. As a 
third way, transform-based rendering methods may 
be used.
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4.2 
Cut Planes

Once a surface view is available, a very simple and 
effective method of visualizing interior structures 
is cutting. When the original intensity values are 
mapped onto the cut plane, they can be better un-
derstood in their anatomical context (Höhne et al. 
1990). A special case is selective cutting, where cer-
tain objects are left untouched (Fig. 4.1).

4.3 
Surface Rendering

Surface rendering bridges the gap between volume 
visualization and more traditional computer graph-
ics (Foley et al. 1995; Watt 2000). The key idea is to 
create intermediate surface descriptions of the rel-
evant objects from the volume data. Only this infor-
mation is then used for rendering images. If triangles 
are used as surface elements, this process is called 
triangulation.

An apparent advantage of surface extraction is the 
potentially very high data reduction from volume to 
surface representations. Resulting computing times 
can be further reduced if standard data structures, 
such as polygon meshes, are used which are supported 
by standard computer graphics hard- and software.

On the other hand, the extraction step eliminates 
most of the valuable information on the cross-sec-
tional images. Even simple cuts are meaningless be-
cause there is no information about the interior of 
an object, unless the image volume is also available 
at rendering time. Furthermore, every change of sur-
face defi nition criteria, such as adjusting a threshold, 
requires a recalculation of the whole data structure.

The classic method for surface extraction is the 
marching-cubes algorithm, developed by Lorensen 
and Cline (1987). It creates an iso-surface, approxi-
mating the location of a certain intensity value in the 
data volume. This algorithm basically considers cubes 
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of 2×2×2 contiguous voxels. Depending on whether 
one or more of these voxels are inside the object (i.e., 
above a threshold value), a surface representation of 
up to four triangles is placed within the cube. The ex-
act location of the triangles is found by linear inter-
polation of the intensities at the voxel vertices. The 
result is a highly detailed surface representation with 
sub-voxel resolution (Fig. 4.2).

Various modifi cations of the marching-cubes al-
gorithm have been developed; these include the cor-
rection of topological inconsistencies (Natarajan 
1994), and improved accuracy by better approxi-
mating the true isosurface in the volume data, us-
ing higher order curves (Hamann et al. 1997) or an 
adaptive refi nement (Cignoni et al. 2000).

As a major practical problem, the marching-cubes 
algorithm typically creates hundreds of thousands of 

triangles when applied to clinical data. As has been 
shown, these numbers can be reduced considerably 
by a subsequent simplifi cation of the triangle meshes 
(Cignoni et al. 1998; Schroeder et al. 1992; Wilmer 
et al. 1992).

4.4 
Direct Volume Visualization Methods

In direct volume visualization, images are created di-
rectly from the volume data. Compared with surface-
based methods, the major advantage is that all gray-
level information which has originally been acquired 
is kept during the rendering process. As shown by 
Höhne et al. (1990) this makes it an ideal technique 
for interactive data exploration. Threshold values and 
other parameters which are not clear from the be-
ginning can be changed interactively. Furthermore, 
volume-based rendering allows a combined display 
of different aspects such as opaque and semi-trans-
parent surfaces, cuts, and maximum intensity projec-
tions. A current drawback of direct volume visualiza-
tion is that the large amount of data which has to be 
handled allows only limited real-time applications on 
present-day computers.

4.4.1 
Scanning the Volume

In direct volume visualization, we basically have the 
choice between two scanning strategies: pixel by pixel 
(image order) or voxel by voxel (volume order). These 
strategies correspond to the image and object order 
rasterization algorithms used in computer graphics 
(Foley et al. 1995).

Fig. 4.1. Brain from MRI. Original intensity values are mapped 
onto the cut planes.

Fig. 4.2. Triangulated (left) and 
shaded (right) portion of the 
brain from MRI, created with 
the marching-cubes algorithm
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In image order scanning, the data volume is sam-
pled on rays along the viewing direction. This method 
is commonly known as ray casting.The principle is 
illustrated in Fig. 4.3. At the sampling points, the in-
tensity values are interpolated from the neighboring 
voxels, using tri-linear interpolation or higher-order 
curves (Marschner and Lobb 1994; Möller et al. 
1997). Along the ray, visibility of surfaces and objects 
is easily determined. The ray can stop when it meets 
an opaque surface. Yagel et al. (1992) extended this 
approach to a full ray-tracing system, which follows 
the viewing rays as they are refl ected on various sur-
faces. Multiple light refl ections between specular ob-
jects can thus be handled.

Image-order scanning can be used to render both 
voxel and polygon data at the same time, known as 
hybrid rendering (Levoy 1990). Image quality can 
be adjusted by choosing smaller (oversampling) or 
wider (undersampling) sampling intervals (Pommert 
2004). Unless stated otherwise, all 3D images shown 
in this chapter were rendered with a ray-casting al-
gorithm.

As a drawback, the whole input volume must be 
available for random access to allow arbitrary view-
ing directions. Furthermore, interpolation of the 
intensities at the sampling points requires a high 
computing power. A strategy to reduce computation 
times is based on the observation that most of the 
time is spent traversing empty space, far away from 
the objects to be shown. If the rays are limited to 
scanning the data, only within a pre-defi ned bound-
ing volume around these objects, scanning times are 
greatly reduced (Šrámek and Kaufman 2000; Tiede 
1999; Wan et al. 1999).

In volume-order scanning, the input volume is 
sampled along the lines and columns of the 3D array, 
projecting a chosen aspect onto the image plane in 
the direction of view. The volume can either be tra-
versed in back-to-front (BTF) order from the voxel 
with maximal distance to the voxel with minimal 
distance to the image plane, or vice versa in front-
to-back (FTB) order. Scanning the input data as they 
are stored, these techniques are reasonably fast even 
on computers with small main memories; however, 
implementation of display algorithms is usually 
much more straightforward using the ray-casting 
approach.

4.4.2 
Splatting in Shear-Warp Space

The shear-warp factorization-rendering algorithm 
belongs to the fastest object space-rendering algo-
rithms. The advantages of shear-warp factorization 
are that sheared voxels are viewed and projected only 
along ±X, ±Y, and ±Z axis, i.e., along the principal 
viewing directions in sheared object space, rather 
than an arbitrary viewing direction, which makes 
it possible to traverse and accumulate slice by slice. 
Neighbor voxels share the same footprint and are 
exactly one pixel apart.

In the original shear-warp algorithm (Lacroute 
and Levoy 1994) only slices are sheared rather than 
each voxel itself (see the dotted line in Fig. 4.4, left). 
In other words, slices are displaced (sheared) relatively 
to each other, but the voxels within each slice are re-
maining orthogonal cubes. We call this case “projective 
shear warp” in order to discriminate it from “splatting 
shear warp” introduced in Cai and Sakas (1998).

In splatting shear warp the mathematically correct 
shear of the object space is calculated. The complete 
data set is regarded to be a continuous space sheared 
by the shearing transformation; thus, each voxel is 
sheared as well, resulting in parallelepipeds rather 
than cubes. Therefore, the projection area of a voxel is 
now in general greater than 1.0. This difference is illus-
trated in Fig. 4.4 (right: in projective shear-warp pixel 
A only accumulates the value of voxel i+1 (dashed 
line). In splatting shear warp instead, pixel A accumu-
lates values from both voxel i and i+1 (solid line). The 
implication of this is that in the latter case a sub-voxel 
splatting sampling calculation according to an individ-
ual splatting table (footprint) becomes necessary.

The general footprint table is established by digi-
tizing and scanning the 2×2 shear footprint area un-
der different reconstruction kernel, as seen in Fig. 4.5. 

Fig. 4.3. Principle of ray casting for volume visualization. In this 
case, the object surface is found using an intensity threshold.
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The size of the table is 2N×2N, where N×N is the digi-
tization degree, i.e., the number of subpixels within 
one pixel, which is usually selected between 10 and 
20 or even more, depending on the required accuracy. 
The weight of each subpixel is calculated by employ-
ing the integral of next equation at the mid-point of 
the subpixel.

W h x y z dzi v
Z

Z

= ∫ ( , , )0 0
0

1

where ( , )x y0 0  is the center of subpixel, h x y zv ( , , )  
is the volume reconstruction kernel, and ( , )Z Z0 1 is 
the integral range. In Cai and Sakas (1998) , different 
digitally reconstructed radiography (DRR) rendering 
algorithms, ray casting, projective shear warp, and 
splattering shear warp, are compared with each other 
under different sampling methods, nearest-neighbor 
interpolation, and tri-linear interpolation.

4.5 
Visualization Primitives in 
Direct Volume Rendering

Once one decides the principal traversing method 
(FTB or BTF) and chooses a principal algorithm (ray 
casting or splatting), one is able to traverse the vol-
ume visiting the voxels of interest. Now a decision 
has to be taken about how the value (density, mate-
rial, property, etc.) represented by each voxel will be 
transferred to visible characteristics on the image 
place. The following sections summarize the meth-
ods most commonly used in medical applications.

4.5.1 
Maximum and Minimum Intensity Projection

For small bright objects, such as vessels from CT or MR 
angiography, maximum intensity projection (MIP) is 
a suitable display technique (Fig. 4.6). Along each ray 
through the data volume, the maximum gray level is 
determined and projected onto the imaging plane. The 
advantage of this method is that neither segmentation 
nor shading are needed, which may fail for very small 
vessels. But there are also some drawbacks: as light re-
fl ection is totally ignored, maximum intensity projec-
tion does not give a realistic 3D impression. Sampling 

Fig. 4.4 .The difference between 
voxel splatting and projection in 
shear warp

Fig. 4.5. Shear 
footprint and 
its convolution 
matrix

Fig. 4.6. Maximum intensity projection for brain (left, middle) and minimum intensity projection for US vessels (right)
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of small vessels can be subject to errors, accurate and 
fast solutions to this problem have been proposed in 
(Sakas, 1995). Spatial perception can be improved by 
real-time rotation (Mroz et al. 2000) or by a combined 
presentation with other surfaces or cut planes (Höhne 
et al. 1990).

4.5.2 
Digitally Reconstructed Radiographies

The optical model in DRR volume rendering is the 
so-called absorption only (Max 1995), in which par-
ticles only absorb the energy of incident light. If I0 is 
the intensity of incident ray, the light intensity after 
penetrating distance s within the medium is

I s I K t dt
s

( ) exp( ( ) )= −∫0
0

λ

where K  is the attenuation coeffi cient and l is the 
wavelength.

In Fig. 4.7, the intensity when the ray arrives at the 
screen is

I I T I Tp background= − +0 1*( ) *

where T P P= exp( ( ))Γ 0 1 is the transparency and

Γ( ) ( )P P K t dt
P

P

0 1
0

1

= ∫ λ
 

is the optical length.
The main computation cost in DRR volume ren-

dering is to calculate the integration of optical length, 
i.e.,

Γ ∆( ) ( ) , [ , ]s K s s s p p= ∈∑ λ  0 1

where 
∆s L N L P P= =/ , 0 1  and N is the number of 

sampling points (consider even distance sampling). 
Thus, 
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where 
K mλ ,  is the mass attenuation coeffi cient and  

is the density. See Cai and Sakas (1999) for a discus-
sion of the transfer functions.

DRRs are extremely useful in numerus medical 
applications. Figure 4.8 shows examples of DRRs 
generated from CT data for a virtual cancer treat-
ment simulation  (Cai 1999, Cai 2000, Zamboglou 
2003, Zamboglou 2004). Most of the DRR render-
ing algorithms are ray casting (called X-ray casting), 
which is image space-rendering algorithm; however, 
also shear-warp algorithms can be used. They have 
superior speed, however algorithmic advantages.

4.5.3 
Direct Surface Rendering

Using one of the scanning techniques described, the 
visible surface of an object can be rendered directly 
from the volume data. This approach is called direct 
surface rendering (DSR). To determine the surface 
position, a threshold or an object membership label 
may be used, or both may be combined to obtain a 
highly accurate iso-surface (Pommert 2004; Tiede et 
al. 1998; Tiede 1999). Typically with CT data a thresh-
old value is employed for extracting the location of 
the surface, whereas the local gradient approximates 
the surface normally used for shading. Note that the 
position of the observer may also be inside the object, 
thus creating a virtual endoscopy.

For realistic display of the surface, one of the illumi-
nation models developed in computer graphics may be 
used. These models, such as the Phong shading model, 
take into account both the position and type of simu-
lated light sources, as well as the refl ection properties 
of the surface (Foley et al. 1995; Watt 2000). A key 
input into these models is the local surface inclination, 
described by a normal vector perpendicular to the sur-
face. Depending on the selected threshold, skin or bone 
or other surfaces can be visualized without having to 
explicitly segment them in a pre-processing step. Fig. 4.9 
left and middle shows examples of direct volume ren-
dering from CT and MRI datasets displaying the pos-
sibilities of displaying surfaces of various impression.

As shown by Höhne and Bernstein (1986), a very 
accurate estimate of the local surface normal vectors can 
be obtained from the image volume. Due to the partial-
volume effect, the intensities in the 3D neighborhood 
of a surface voxel represent the relative proportions of 
different materials inside these voxels. The surface in-
clination is thus described by the local gray-level gradi-
ent, i.e., a 3D vector of the partial derivatives. A num-
ber of methods to calculate the gray-level gradient are Fig. 4.7. X-ray optical model
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presented and discussed elsewhere (Marschner and 
Lobb 1994; Tiede et al. 1990; Tiede 1999).

4.5.4 
Direct Semi-Transparent Volume Rendering

Direct volume rendering (DVR), or volume ren-
dering for short, is the visualization equivalent of 
fuzzy segmentation (see section 1.2.2). For medical 
applications, these methods were fi rst described by 
Drebin et al. (1988) and Levoy (1988). A commonly 
assumed underlying model is that of a colored, semi-
transparent gel with suspended refl ective particles. 
Illumination rays are partly refl ected and change 
color while traveling through the volume.

Each voxel is assigned a color and opacity. This 
opacity is the product of an object-weighting func-
tion and a gradient-weighting function. The ob-

ject-weighting function is usually dependent on the 
intensity, but it can also be the result of a more so-
phisticated fuzzy segmentation algorithm. The gra-
dient-weighting function emphasizes surfaces for 3D 
display. All voxels are shaded, using, for example, the 
gray-level gradient method. The shaded values along 
a viewing ray are weighted and summed up.

A simplifi ed recursive equation which models 
frontal illumination with a ray-casting system is 
given as follows:

I intensity of refl ected light
p index of sampling point on ray 
 (0 . . . max. depth)
L fraction of incoming light (0.0 . . . 1.0)
� local opacity (0.0 . . . 1.0)
s  local shading component
I(p,L) = �(p)Ls(p) + (1.0–�(p))I(p+1,(1.0–�(p))L)
The total refl ected intensity as displayed on a pixel 

of the 3D image is given as I (0, 1.0). Since binary de-

Fig. 4.8. Digitally reconstructed 
radiography (DRR) generated 
from CT data sets

Fig. 4.9. Direct rendering shaded volume from CT and MRI data. Left and middle surface rendering, right semi-transparent 
rendering
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cisions are avoided in volume rendering, the result-
ing images are very smooth and show a lot of fi ne 
details, see e. g. the shape of the fi ne heart vessels in 
Fig. 4.10. Another advantage is that even coarsely de-
fi ned objects can be rendered (Tiede et al. 1990). On 
the other hand, the more or less transparent images 
produced with volume rendering are often hard to 
understand so that their value is sometimes ques-
tionable. To some extent, spatial perception can be 
improved by rotating the object.

Concluding, all visualization methods listed here 
have benefi ts and drawbacks and emphasize different 
aspects of the examined dataset as shown in Fig. 4.12. 
A selection of the “correct” method has to be done by 
the end-user on a case-by-case basis.

4.5.5 
Volume Rendering Using Transfer Functions

An improvement over conventional semi-transparent 
rendering is the use of transfer functions for assign-
ing optical properties such as color and opacity to the 
original values of the data set as shown on Fig. 4.11. 
If, for instance, the true colors for the organs that are 
included in the rendered scene are known, a very re-
alistic rendering result can be obtained. For that, the 
relationship between CT number (Hounsfi eld unit), 
gray, red, green, and blue values of the tissues, and 
their refractive indices have to be retrieved (Biswas 
and Gupta 2002). As a result of those measurements a 
table that assigns CT number to gray, red, green, and 

blue values describing the corresponding relations for 
different parts of the body (brain, abdomen, thorax, 
etc.) can be compiled. Direct volume rendering using 
a color transfer function that is based on such a table 
refl ects more or less the true colors of the tissue.

An extension of the assignment of color or opacity 
only to gray value that represents in fact a 1D transfer 
function is the usage of multi-dimensional transfer 
functions (Kniss et al. 2002). There, in addition to a 
voxel’s scalar value, the fi rst and second derivative of 
the image data set are taken into account. This allows 
for a better separation of different tissues for the pur-
pose of direct volume rendering; however, using multi-
dimensional transfer functions requires interacting in 
a multi-dimensional space. This task can be facilitated 
dramatically if those transfer functions are generated 
semi-automatically (Kindlmann and Durkin 1998). 
It has been shown that using multi-dimensional trans-
fer functions for assigning opacity in direct volume 
rendering results in a smoother and more “correct” 
visualization of the image data, since complex bound-
aries are better separated from each other than if only 
a 1D transfer function is used.

4.6 
Transform-Based Rendering

While both surface extraction and direct volume vi-
sualization operate in a 3D space, 3D images may be 
created from other data representations as well. One 

Fig. 4.10. Direct semi-transparent volume rendering technique
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such method is frequency domain volume rendering, 
which creates 3D images in Fourier space, based on 
the projection-slice theorem (Totsuka and Levoy 
1993). This method is very fast, but the resulting im-
ages are somewhat similar to X-ray images, lacking 
real depth information.

The Fourier projection slice theorem states that 
the inverse transformation of a slice extracted from 
the frequency domain representation of a volume 
results in a projection of the volume, in a direction 
perpendicular to the slice. Based on this theorem, the 
description of the FDR can be summarized in the fol-
lowing three steps (Fig. 4.13):

1. Transformation of the 3D volume from spa-
tial domain to the frequency domain, using an 
FFT. Supposing that f(x, y, z) is the description 
of the volume in spatial domain, the result-
ing volume F(i, j, k) in frequency domain will 
be taken, with the application of the 3D fast 
Fourier transformation:

F(i, j, k) =
 

x=0

N-1

∑
y=0

N-1

∑
z=0

N-1

∑ f(x, y, z)exp[– ĵ 2π(ix+jy+kz)/N]

where ĵ
  
= −1  and i, j, and k vary from 0 to 

N-1.

2. Extraction of a 2D slice from the 3D spectrum 

along a plane which includes the origin and is 
perpendicular to the viewing plane, resulting 
in an F(u, v) slice.

3. Inverse transformation of the 2D extracted 
spectrum to the spatial domain using a 2D 
IFFT:
f(l, m) =

1
N

u=0

N-1

∑
v=0

N-1

∑ F(u, v)exp[ ĵ
  
2π(ul + vm))/N]

where ĵ
  
= −1  and l, m vary from 0 to N-1.

Fig. 4.11. Direct volume-rendered shaded cardiac CT data set 
using a color transfer function based on the measured true 
colors of the thoracic tissue

Fig. 4.12. Comparison of surface, maximum intensity projec-
tion, DRR, and semi-transparent rendering for the same data 
set. Each method emphasizes different aspects of the data set.

Fig. 4.13. General description of the frequency domain volume 
rendering method
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The time-consuming 3D FFT is a data pre-process-
ing step that is done only once and is fi nished before 
rendering; thus, the rendering time consists of the 
costs from the second and third steps.

A more promising approach is wavelet transforms. 
These methods provide a multi-scale representation 
of 3D objects, with the size of represented detail lo-
cally adjustable. The amount of data and rendering 
times may thus be reduced dramatically. Application 
to volume visualization is shown by He et al. (1998).

4.7 
Image Fusion

For many applications, it is desirable to combine or 
fuse information from different imaging modalities. 
For example, functional imaging techniques, such as 
magnetoencephalography (MEG), functional MRI 
(fMRI), or PET, show various physiological aspects 
but give little or no indication for the localization of 
the observed phenomena. For their interpretation, a 
closely matched description of the patient’s morphol-
ogy is required, as obtained by MRI. Considering only 
soft tissue anatomy, bone morphology or functional 
information in separate 3D data sets is not suffi cient 
anymore in clinical practice. Pre-processing and vi-
sualizing all this complex information in a way that 
is easy to handle for clinicians is required to exploit 
the benefi t of the unique clinical information of each 
of the modalities.

In general, image volumes obtained from differ-
ent sources do not match geometrically (Fig. 4.14). 
Variations in patient orientation and differences in 
resolution and contrast of the modalities make it al-
most impossible for a clinician to mentally fuse all the 
image information accurately. It is therefore required 
to transform one volume with respect to the other, 
i.e., in a common coordinate frame. This process is 
known as image registration.

Image registration can be formulated as a prob-
lem of minimizing a cost function that quantifi es the 
match between the images of the two modalities. In 
order to determine this function, different common 
features of those images can be used. Maintz and 
Viergever (1998) and van den Elsen et al. (1993) 
have given detailed surveys about the classifi cation 
of the registration process. Maintz et al. describe the 
classifi cation of the registration procedures based on 
nine different criteria:

1. The dimensionality (e.g., 3D to 3D or 2D to 3D)
2. The nature of the registration basis (e.g., intrinsic 

or extrinsic)
3. The nature of the transformation (e.g., rigid or 

curved)
4. The domain of the transformation (e.g., local or 

global)
5. The interaction (e.g., manual of automatic)
6. The optimization procedure (e.g., iterative closest 

point or simulated annealing)
7. The modalities involved (e.g., CT, MR, or PET)

Fig. 4.14. Fusion of a CT and MR data set il-
lustrates the differences of the patient align-
ment in both acquisitions.
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Fig. 4.15. Fusion of different imaging modalities for therapy 
control in a clinical study of obsessive-compulsive disorder. 
Magnetic resonance imaging shows that morphology is com-
bined with a positron emission tomography (PET) scan, which 
shows glucose metabolism. Since the entire volume is mapped, 
the activity can be explored at any location of the brain.

8. The subject (e.g., inter-subject, intra-subject, or 
atlas)

9. The object (e.g., head or abdomen)

When considering the nature of the registration 
base, for example, the transformation may be defi ned 
using corresponding landmarks in both data sets. 
In a simple case, artifi cial markers attached to the 
patient are available which are visible on different 
modalities (Bromm and Scharein 1996); otherwise, 
pairs of preferably stable matching points, such as the 
AC–PC line, may be used. A more robust approach is 
to interactively match larger features such as surfaces 
(Schiemann et al. 1994). Figure 4.15 shows the result 
of the registration of a PET and an MRI data set.

Segmentation-based registration approaches can
be divided into those using rigid models, such as, 
points, curves, or surfaces, and those using deformable 
models (e.g., snakes or nets). In all cases the registra-
tion accuracy of this method is limited to the accuracy 
of the segmentation step. Herewith any two modalities 
can be registered given the fact that the structures are 
visible within both. As an example, in some cases the 
target area in US images is not as visible as it should 
be to ensure a qualitatively high treatment of prostate 
cancer, whereas other modalities, such as CT, provide 
a better image. Unfortunately, CT cannot be used in a 
live-imaging procedure in the treatment room during 
intervention such as ultrasound imaging. To overcome 
these limitations, the images of both modalities can 
be registered in a unique data set, i.e., gathering pre-
operatively a CT volume and using it in combination 
with the intra-operative US-guided live procedure. To 
realize this, the separate volumes of CT and US can be 
registered with respect to each other based on the ge-
ometry of the urethra or by mutual information based 
on their greylevels as shown in Fig. 4.16 (Firle et al. 
2003).

In a fundamentally different approach, the results 
of a registration step are evaluated at every point 
of the combined volume, based on intensity values 
(Studholme et al. 1996; Wells et al. 1996). Starting 
from a coarse match, registration is achieved by adjust-
ing position and orientation until the mutual informa-
tion (“similarity”) between both data sets is maximized. 
These methods are fully automatic, do not rely on a 
possibly erroneous defi nition of landmarks, and seem 
to be more accurate than others (West et al. 1997).

Mutual information, originating in the information 
theory, is a voxel-based similarity measure of the sta-
tistical dependency between two data sets, which has 
been proposed by Collignon et al. (1995) and Viola 
and Wells (1997). It evaluates the amount of infor-

mation that one variable contains about the other. By 
superimposing two data sets of the same object, but 
from different modalities, this method states that they 
are correctly aligned if the mutual information of 
geometrically corresponding gray values is maximal. 
Since no assumptions are made about the two signals, 
this method is not restricted to specifi c modalities and 
does not require the extraction of features in a pre-
processing step. A recent survey about mutual infor-
mation-based registration approaches was given by 
Pluim et al. (2003; Figs. 4.17, 4.18).

The calculation of the transformation based on 
mutual information is a very time-consuming opti-
mization process. Exploiting the coarse-to-fi ne reso-
lution strategy (pyramidal approach) is one com-
mon possibility to speed up the registration process 
(Pluim et al. 2001). Another approach, when allow-
ing only rigid transformations, is the usage of the “3D 
cross model” (Firle et al. 2004). This partial-volume 
based matching assumes that the center of the vol-
ume comprises the majority of the overlapping infor-
mation between both images. The data from all three 
directions through the reference image (Maes et al. 
1997) is taken without any high sub-sampling factors 
or lowering the number of histogram bins (Capek et 
al. 2001). Figures 4.17 and 4.18 depict the registration 
result of a whole-body CT and PET data set.

4.8 
3D Anatomical Atlases

Whereas in classical medicine knowledge about the 
human body is represented in books and atlases, 



36 G. Sakas and A. Pommert

Fig. 4.16. Fusion of CT and 3D US volumes based on the urethra geometry (upper) and MRI with 3D U/S based on mutual 
information (lower)

Fig. 4.17. While CT identifi es the precise size, shape, and loca-
tion of a mass, PET detects changes in the metabolism caused 
by the growth of abnormal cells in it. Fusion of the whole-body 
scans of both modalities

Fig. 4.18. A 3D image fusion after mutual-information-based 
registration of a CT and PET data set. Blending of the PET 
into the CT volume using image-level intermixing and differ-
ent opacity settings
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present-day computer science allows for new, more 
powerful and versatile computer-based representa-
tions of knowledge. The most straightforward exam-
ple are multimedia CD-ROMs containing collections 
of classical pictures and text, which may be browsed 
arbitrarily. Although computerized, such media still 
follow the old paradigm of text printed on pages, ac-
companied by pictures.

Using methods of volume visualization, spatial 
knowledge about the human body may be much 
more effi ciently represented by computerized 3D 
models. If such models are connected to a knowledge 
base of descriptive information, they can even be in-
terrogated or disassembled by addressing names of 
organs (Brinkley et al. 1999; Golland et al. 1999; 
Höhne et al. 1996; Pommert et al. 2001).

A suitable data structure for this purpose is the intel-
ligent volume (Höhne et al. 1995), which combines a de-
tailed spatial model enabling realistic visualization with 
a symbolic description of human anatomy (Fig. 4.19). 
The spatial model is represented as a 3D volume as de-
scribed above. The membership of voxels to an object is 
indicated by labels which are stored in attribute volumes 
congruent to the image volume. Different attribute vol-
umes may be generated, e.g., for structure or function. 
Further attribute volumes may be added which contain, 
for example, the incidence of a tumor type or a time tag 
for blood propagation on a per-voxel basis.

The objects themselves bear attributes as well. 
These attributes may be divided into two groups: 

fi rstly, attributes indicating meaning such as names, 
pointers to text or pictorial explanations, or even fea-
tures such as vulnerability or mechanical properties, 
which might be important (e.g. for surgical simula-
tion); secondly, attributes defi ning their visual ap-
pearance, such as color, texture, and refl ectivity. In 
addition, the model describes the interrelations of 
the objects with a semantic network. Examples for 
relations are part of or supplied by.

Once an intelligent volume is established, it can 
be explored by freely navigating in both the picto-
rial and descriptive worlds. A viewer can compose 
arbitrary views from the semantic description or 
query semantic information for any visible voxel of 
a picture. Apart from educational purposes, such at-
lases are also a powerful aid for the interpretation of 
clinical images (Kikinis et al. 1996; Nowinski and 
Thirunavuukarasuu 2001; Schiemann et al. 1994; 
Schmahmann et al. 1999).

Because of the high computational needs, 3D ana-
tomical atlases are not yet suitable for present-day per-
sonal computers. Schubert et al. (1999) make such a 
model available for interactive exploration via pre-
computed Intelligent QuickTime virtual-reality videos, 
which can be viewed on any personal computer. A 3D 
atlas of regional, functional, and radiological anatomy 
of the brain based on this technique has been published 
(Höhne et al. 2001), along with a high-resolution atlas of 
the inner organs, based on the Visible Human (Höhne 
et al. 2003). A screenshot is shown in Fig. 4.20.

Fig. 4.19. Basic structure of the intelligent volume, integrating spatial and symbolic description of anatomy
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To date, most 3D anatomical atlases are based on 
the data derived from one individual only. The inter-
individual variability of organ shape and topology 
in space and time is thus not yet part of the model. 
Methods for measuring and modeling variability are 
currently being developed (Mazziotta et al. 1995; 
Styner and Gerig 2001; Thompson et al. 2000).
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5.1 
Introduction

Treatment planning for conformal radiotherapy re-
quires accurate delineation of tumor volumes and 
surrounding healthy tissue. This is especially true in 
inverse planning where trade-offs in the dose-vol-
ume relationships of different tissues are usually the 
driving forces in the search for an optimal plan. In 
these situations, slight differences in the shape and 
overlap regions between a target volume and criti-
cal structures can result in different optimized plans. 
While X-ray computed tomography (CT) remains 
the primary imaging modality for structure deline-
ation, beam placement and generation of digitally 
reconstructed radiographs, data from other modali-
ties, such as magnetic resonance imaging and spec-
troscopy (MRI/MRSI) and positron/single photon 
emission tomography (PET/SPECT), are becoming 
increasingly prevalent for tumor and normal tissue 
delineation (Fig. 5.1).

There are many reasons to include image data 
from other modalities into the treatment-planning 
process. In many sites, MRI provides superior soft 
tissue contrast relative to CT and can be used to en-
hance or suppress different tissues such as fat and 
conditions such as edema. Magnetic resonance im-
aging also permits imaging along arbitrary planes 
which can improve visualization and segmentation 
of different anatomic structures. More recently, 
MRI has been used to acquire localized informa-
tion about relative metabolite concentrations, fl uid 
mobility, and tissue microstructure. With a variety 
of tracer compounds available, PET and SPECT can 
provide unique information about different cellular 
and physiologic processes to help assess normal and 
diseased tissues.

In addition to static treatment planning, volu-
metric image data is playing a larger role in treat-
ment delivery and adaptive radiotherapy. Modern 
treatment machines can now be equipped with 
imaging devices that allow acquisition of volumet-
ric CT data at the time of treatment. These “treat-
ment-delivery CT” studies can be used to adapt 
a treatment plan based on the patient’s anatomy 
at the time of treatment and allow more accurate 
tracking of delivered dose. Furthermore, data from 
magnetic resonance and nuclear medicine acquired 
during the course of therapy may also help assess 
the effi cacy of therapy and indicate prescription 
changes (Chenevert et al. 2000; Mardor et al. 
2003; Barthel et al. 2003; Brun et al. 2002; Allal 
et al. 2004).

To fully realize the benefi ts of the information 
available from different imaging studies, the data 
they provide must be mapped to a single coordinate 
system, typically that of the treatment planning CT. 
This process is called image registration. Once they 
are all linked to a common coordinate system, data 
can be transferred between studies and integrated to 
help construct a more complete and accurate repre-
sentation of the patient. This process is called data fu-
sion. This chapter describes the mechanics of image 
registration and data fusion processes. 
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5.2 
Image Registration

Image registration is the process of determining the 
geometric transformation that maps the coordinates 
between identical points in different imaging studies. 
With this mapping, information can be transferred be-
tween the studies or fused in various ways (Fig. 5.2).

For the discussion that follows, we describe the 
mechanics of automated image registration using 
two data sets which are labeled Study A and Study B. 
Study A is the base or reference data set and is held 
fi xed and Study B the homologous data set that is 

manipulated to be brought into geometric alignment 
with Study A. Study B’ is the transformed data from 
Study B.

Numerous techniques exist for image registration. 
The choice of technique depends on the imaging mo-
dalities involved, the anatomic site, and the level of 
control over the imaging conditions. A detailed re-
view is given by Maintz and Viergever (1998). The 
general approach in each of the methods is to devise 
a registration metric that measures the degree of mis-
match (or similarity) between one or more features 
in two data sets and to use standard numerical opti-
mization methods to determine the parameters of a 

Fig. 5.1. Examples of different multimodality imaging data available for treatment planning

Fig. 5.2. The image registration 
and data fusion processes

                    x-ray CT                            Spin echo MR                       11C-methionine PET X
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geometric transformation that minimize (maximize) 
the metric. Differences between various techniques 
include the metric used, the features used to measure 
the mismatch, the particular form of the geometric 
transformation used, and the optimization method 
used for computing the required parameters.

The image registration process illustrated in Fig. 5.3 
can be either automated or manual. Automated image 
registration is analogous to inverse treatment plan-
ning, with the registration metric replacing the “plan 
cost function” and the parameters of the transfor-
mation replacing the plan defi ning parameters such 
as beamlet intensities or weights. In both cases the 
parameters are iterated using an optimizer until an 
“optimal” set of parameters is found. Manual image 
registration is more like forward treatment planning. 
The “optimizer” is a human with a suite of interac-
tive tools that let the user perform various image 
transformations and visualize the results in real time. 
While manual registration tools typically only sup-
port rotation and translation, they can also be used to 
initialize more complex automated registrations.

5.2.1 
Geometric Transformations

The fundamental task of image registration is to fi nd 
the geometric transformation, T, which maps the co-
ordinates of a point in Study A to the coordinates of 
the corresponding point in Study B. In general, this 
transformation can be written as

xB = T (xA,{ }),

where xA is the coordinate of the point in Study A, xB 
is the coordinate of the same anatomic point in Study 

B, and { } is the set of parameters of the transfor-
mation. The output of the image registration process 
is the parameters { } for a particular pair of imag-
ing studies (Fig. 5.3). The number of parameters re-
quired to determine the transformation depends on 
the form of T, which in turn depends on the clinical 
site, clinical application, and the modalities involved.

In the ideal case, where the patient is positioned 
in an identical orientation in the different imaging 
studies and the scale and center of the coordinate sys-
tems coincide, T is simply an identity transformation 
I and xB = xA for all points in the two imaging stud-
ies. This situation most closely exists for combined 
imaging modality devices such as PET–CT machines, 
especially if physiologic motion is controlled or ab-
sent. Unfortunately, it is far more common for the 
orientation of the patient to change between imaging 
studies, making more sophisticated transformations 
necessary.

For situations where the anatomy of interest can 
be assumed to move as a rigid body, the set of param-
eters consists of three rotation angles ( x, y, z) and 
three translations (tx ,ty ,tz). The rigid body transfor-
mation is then written as

xB = Trigid (xA, { }) = A xA+b,

where A is a 3×3 rotation matrix and b is a 3×1 trans-
lation vector. This transformation is simply the famil-
iar one dimensional function “y = m·x+b”, except in 
three dimensions.

In matrix notation this can be written as

x
B

y
B

z
B

x
A

y
A

z
A

= +A b
 .

Fig. 5.3. The image registra-
tion process
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If the scales of the two data sets are not identical, it 
is necessary to also include scale factors (sx,sy,sz) into 
the matrix A. This is usually a device calibration is-
sue rather than an image registration problem, but if 
these factors exist and are not compensated for by a 
preprocessing step, they must be determined during 
the registration process.

The rigid and scaling transformations are special 
cases of the more general affi ne transformation. A 
full affi ne transformation includes parameters for 
rotation, translation, scale, shear, and plane refl ec-
tion. One attribute of affi ne transformations is that 
all points lying on a line initially still lie on a line after 
transformation and “parallel lines stay parallel.”

Another notation used to specify rigid or affi ne 
transformations is to combine the 3×3 matrix A and the 
3×1 translation vector b into a single 4×4 matrix, i.e.,

x
B

y
B

z
B

1

= +
A b

x
A

y
A

z
A

10 0 0 1  .

The DICOM imaging standard uses this represen-
tation for affi ne transformations to specify the spatial 
relationship between two imaging studies (National 
Electrical Manufacturers Association 2004).

The assumption of global rigid movement of anat-
omy is often violated, especially for sites other than 
the head and large image volumes that extend to the 
body surface. Differences in patient setup (arms up 
versus arms down), organ fi lling, and uncontrolled 
physiologic motion confound the use of a single af-
fi ne transform to register two imaging studies. In 
some cases where local rigid motion can be assumed, 
it may be possible to use a rigid or affi ne transforma-

tion to register sub-volumes of two imaging studies. 
For example, the prostate itself may be considered 
rigid, but it can move relative to the pelvis depending 
on the fi lling of the rectum and bladder. By consider-
ing only a limited fi eld-of-view that includes just the 
region of the prostate, it is often possible to use an aff-
ine transformation to accurately register the prostate 
anatomy in two studies. One or more sub-volumes 
can be defi ned by simple geometric cropping or de-
rived from anatomic surfaces (Fig. 5.4).

Even with a limited fi eld-of-view approach, there 
are many sites in which affi ne registration techniques 
are not powerful enough to achieve acceptable align-
ment of anatomy. In these sites, an organ’s size and 
shape may change as a result of normal organ be-
havior or the motion of surrounding anatomy. For 
example, the lungs change in both size and shape 
during the breathing cycle, and the shape of the liver 
can be affected by the fi lling of the stomach. When 
registering data sets that exhibit this kind of motion, 
a deformable model must be used to represent the 
transformation between studies.

One class of deformation model is called a spline, 
which is a curve that interpolates points in space 
based on a set of control points. A set of parameters 
associated with each control point defi nes the exact 
shape of this interpolation. The number and location 
of control points determine the extent of deforma-
tion that a spline can express. Two types of splines 
commonly used in biologic and medical imaging 
applications are thin-plate splines and B-splines 
(Bookstein 1989; Unser 1999).

Thin-plate spline transformations model the 
deformations of an infi nite thin plate. The param-
eters associated with this transformation consist of 
a displacement at each control point. Interpolation 

Fig. 5.4. Different types of cropping for limited fi eld-of-view registration

          simple geometric cropping                    piecewise cropping              anatomic-based cropping
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between control points is done by minimizing the 
“bending energy” of this thin plate while leaving the 
control point displacements intact. This concept is not 
limited to fl at “plates” and can be extended to three 
dimensions. The deformation at an arbitrary point 
depends on its distance from each control point, so 
a change in any control point affects the deformation 
of all points in the image volume (except the other 
control points). Thin-plate splines are therefore con-
sidered a global deformation model. Because of this 
property, they perform well with relatively few con-
trol points but do suffer from increased computation 
time when many (>50–100) control points are used.

B-spline transformations use control points called 
knots, arranged in a grid. A piecewise polynomial 
function is used to interpolate the transformation 
between these knots. Any degree polynomial can 
be used, but in medical image registration cubic B-
splines are typical. A B-spline transformation is ex-
pressed as a weighted sum

xB = xA +  wi B(xA – ki),

where each ki is the location of knot i, each wi is a 
weight parameter associated with knot i, and B(x) is 
a basis function. Figure 5.5 illustrates this weighted 
sum in a one-dimensional cubic B-spline example. 
Note that the basis function has a limited extent, so 
each knot only affects a limited region of the overall 
deformation. In this way, B-splines are considered a 
local deformable model. This property of locality al-
lows B-spline models to use very fi ne grids of thou-
sands of knots with only a modest increase in com-
putation time. Each knot adds more control over the 
transformation (more degrees of freedom), so using 

many knots greatly enhances the ability of B-splines 
to model complex deformations. Unfortunately, in-
creasing the number of parameters to optimize dur-
ing the registration process can increase the diffi culty 
of fi nding the optimal solution.

Other deformable models that are possible include 
freeform deformations (used with physical or optical 
fl ow models) and fi nite element methods (Thirion 
1998; Bharatha et al. 2001).

5.2.2 
Registration Metrics

The goal of the image registration process is to deter-
mine the parameters of geometric transformation that 
optimally align two imaging studies. To achieve this 
goal, a registration metric is devised which quantifi es 
the degree to which the pair of imaging studies are 
aligned (or mis-aligned). Using standard optimization 
techniques the transformation parameters are manip-
ulated until this metric is maximized (or minimized) 
(Fig. 5.6). Most registration metrics in use presently 
can be classifi ed as either geometry based or intensity 
based. Geometry-based metrics make use of features 
extracted from the image data such as anatomic or 
artifi cial landmarks and organ boundaries, whereas 
intensity-based metrics use the image data directly.

Geometry-Based Metrics

The most common geometry-based registration 
metrics involve the use of point matching or surface 
matching. For point matching, the coordinates of pairs 
of corresponding points from Study A and Study B 

Fig. 5.5. B-spline deformation model. Left: 1D example of the cubic B-spline deformation model. The displacement ∆x as a 
function of x is determined by the weighted sum of basis functions. The double arrow shows the region of the overall deforma-
tion affected by the weight factor w7. The 3D deformations are constructed using 1D deformations for each dimension. Right: 
B-spline knot locations relative to image data for lung registration using deformation
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are used to defi ne the registration metric. These 
points can be anatomic landmarks or implanted or 
externally placed fi ducial markers. The registration 
metric is defi ned as the sum of the squared distances 
between corresponding points:

R =  (pA – pB’)2 / N,

pA is the coordinate of the a point in Study A, pB’  is 
the coordinate of the transformed point from Study 
B and N is the number of pairs of points.

To compute the rotations and translations for a 
rigid transformation, a minimum of three pairs of 
points are required. For affi ne transformations, a 
minimum of four pairs of non-coplanar points are 
required. Using more pairs of points reduces the 
bias that errors in the delineation of any one pair of 
points has on the estimated transformation param-
eters; however, accurately identifying more than the 
minimum number of corresponding points can be 
diffi cult as different modalities often produce dif-
ferent tissue contrasts (a major reason why multiple 
modalities are used in the fi rst place) and placing or 
implanting larger numbers of markers is not always 
possible or desirable.

Alternatively, surface matching does not require 
a one-to-one correspondence of specifi c points but 
instead tries to maximize the overlap between corre-
sponding surfaces extracted from two imaging stud-
ies, such as the brain or skull surface or pelvic bones. 
These structures can be easily extracted using auto-
mated techniques and minor hand editing. The sur-
faces from Study A are represented as a binary volume 
or as an explicit polygon surface and the surfaces from 
Study B are represented as a set of points sampled from 
the surface (Fig. 5.7). The metric, which represents the 

degree of mismatch between the two datasets, can be 
computed as the sum or average of the squared dis-
tances of closest approach from the points from Study 
B to the surfaces from Study A. It is written as

R =  dist(pB’, SA)2 / N,

where dist(pB’, SA) computes the (minimum) distance 
between point pB’ and the surfaces SA.

As with defi ning pairs of points, it may be inher-
ently diffi cult or time-consuming to accurately delin-
eate corresponding surfaces in both imaging studies. 
Furthermore, since the extracted geometric features 
are surrogates for the entire image volume, any ana-
tomic or machine-based distortions in the image data 
away from these features are not taken into account 
during the registration process.

Intensity-Based Metrics

To overcome some of the limitations of using explicit 
geometric features to register image data, another 
class of registration metric has been developed which 
uses the numerical gray-scale information directly to 
measure how well two studies are registered. These 
metrics are also referred to as similarity measures 
since they determine how similar the distributions of 
corresponding voxel values from Study A and a trans-
formed version of Study B are. Several mathematical 
formulations are used to measure this similarity. The 
more common similarity measures in clinical use in-
clude: sum of squared differences; cross correlation; 
and mutual information.

The sum of squared differences (SSD) metric is 
computed as the average squared intensity difference 
between Study A and Study B’, i.e.,

Study BStudy B

Study AStudy A

Study BStudy B

Study AStudy A

Fig. 5.6. Examples of image registration using geometric data (left) and image data (right). Geometry-based registration aligns 
points or surfaces while intensity-based registration aligns image intensity values.

Study AStudy AStudy BStudy B Study AStudy AStudy BStudy B
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SSD = (IA – IB’)2 / N.

This metric is simple to compute and is effective 
for registering two imaging studies which have essen-
tially identical intensities for corresponding anatomy, 
such as serial or 4D CT data.

When this condition is not met but there is still a 
linear relationship between the intensities of Study A 
and Study B, the cross correlation (CC) metric may 
be used. Rather than minimizing the intensity dif-
ference, cross correlation registration maximizes the 
intensity product:

CC = (IA * IB’) / N.

A normalized version of the cross correlation met-
ric exists and is called the correlation coeffi cient met-
ric (Kim and Fessler 2004).

For data from different modalities where the pixel 
intensities of corresponding anatomy are typically 
(and inherently) different, registration metrics based 
on simple differences or products of intensities are 
not effective. In these cases, sophisticated metrics 
based on intensity statistics are more appropriate. 
When using these metrics, there is no dependence on 
the absolute intensity values. One such metric that 
has proved very effective for registering image data 
from different modalities is called mutual informa-
tion (MI). As the name implies, this metric is based 
on the information content of the two imaging stud-
ies and is computed directly from the intensity distri-
butions of the studies. Since this metric is widely used 
in clinical image registration systems, it is described 
in detail here (see also Wells et al. 1996).

According to information theory, the information 
content H of a “signal” is measured by the expectation 

(of the log) of the probability distribution function 
(PDF) of the signal values (Roman 1997). For image 
data, the signal values are the gray-scale intensities 
and the PDF is the normalized histogram of these in-
tensities. The information content in the image data 
is

H(IA) = – E [log2 p(IA)] = -  p(IA) log2 p(IA),

where p(IA) is the probability distribution function 
of the intensities IA of Study A (Fig. 5.8).

The joint or combined information content of two 
imaging studies has the same form and represents 
the information content of the two studies fused to-
gether. This is computed as

H(IA, IB’) = –   p(IA, IB’) log2 p(IA, IB’)

where p(IA, IB’) is the 2D joint probability distribu-
tion function of the intensities IA of Study A and IB’ of 
Study B’ (Fig. 5.9). This PDF is constructed from the 
pairs of gray-scale values at each common point in 
Study A and Study B’.

The joint or total information content for the two 
imaging studies is always less than or equal to the 
sum of the individual information contents:

H(IA,IB’) ≤ H(IA) + H(IB’).

If there is no redundant information in the 
pair of imaging studies (e.g., they are completely 
independent), the joint information of the pair is 
simply the sum of the information in Study A and 
Study B’:

H(IA,IB’) = H(IA) + H(IB’).

Fig. 5.7. a Extracted surface from Study A and extracted surface and surface points from Study B. b Points colorized based on 
computed distance of closest approach. c Study B points registered to Study A surface

ba c
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If there is some redundant information, then the 
joint information content will be less than the sum of 
the information in the two studies:

H(IA,IB’) < H(IA) + H(IB’).

The amount of shared or mutual information is just 
the difference between the sum of the individual infor-
mation contents and the joint information content,

MI(IA,IB’) = H(IA) + H(IB’) – H(IA,IB’).

Solving for MI from the above equations,

MI(IA,IB’) =   p(IA,IB’) log2 [p(IA,IB’) / p(IA’) p(IB’)].

The mutual information between two imag-
ing studies can be thought of as the information in 
Study B’ that is also present in Study A. Accordingly, 

one way to describe mutual information is as the 
amount of information in Study B’ that can be de-
termined (or predicted) from Study A. To completely 
predict Study B’ from Study A, each intensity value 
in Study A must correspond to exactly one intensity 
value in Study B’. When this is the case the joint in-
tensity histogram has the same distribution as the 
histogram of Study A, and H(IA,IB’) equals H(IA). The 
MI is therefore equal to H(IB’), and Study B’ at this 
point can be thought of as a “recolored” version of 
Study A.

A major advantage of mutual information is that it 
is robust to missing or incomplete information. For ex-
ample, a tumor might show up clearly on an MR study 
but be indistinct on a corresponding CT study. Over the 
tumor volume the mutual information is low, but no 
prohibitive penalties are incurred. In the surrounding 
healthy tissue the mutual information can be high, and 
this becomes the dominant factor in the registration.

Fig. 5.9. Two-dimensional joint-intensity histogram constructed from an MR scan 
(Study A) and a transformed (reformatted) CT (Study B’)

Fig. 5.8. Left: 3D image volume; Right: probability density function of the image intensities

air

fat

bone
tissue
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5.3 
Data Fusion

The motivation for registering imaging studies is to 
be able to map information derived from one study 
to another or to directly combine or fuse the imaging 
data from the studies to create displays that contain 
relevant features from each modality. For example, a 
tumor volume may be more clearly visualized using 
a specifi c MR image sequence or coronal image plane 
rather than the axial treatment-planning CT. If the 
geometric transformation between the MR study and 
the treatment-planning CT study is known, the clini-
cian is able to outline the tumor using images from the 
MR study and map these outlines to the images of the 
CT study. This process is called structure mapping.

Figure 5.10 illustrates the structure mapping proc-
ess. The contours for a target volume are defi ned us-
ing the images from an MR imaging study which has 
been registered to the treatment-planning CT. Next, 
a surface representation of the target volume is con-
structed by tessellating or “tiling” the 2D outlines. 
Using the computed transformation, the vertices of 
the surface are mapped from the coordinate system 
of the MR study to the coordinate system of the CT 
study. Finally, the transformed surface is inserted 
along the image planes of the CT study. The result 

is a set of outlines of the MR-defi ned structure that 
can be displayed over the CT images. These derived 
outlines can be used in the same manner as other 
outlines drawn directly on the CT images.

Another approach to combining information from 
different imaging studies is to directly map the image 
intensity data from one study to another so that at 
each voxel there are two (or more) intensity values 
rather than one. Various relevant displays are pos-
sible using this multi-study data. For example, func-
tional information from a PET imaging study can be 
merged or fused with the anatomic information from 
an MR imaging study and displayed as a colorwash 
overlay. This type of image synthesis is referred to as 
image fusion.

The goal of this approach is to create a version of 
Study B (Study B’) with images that match the size, lo-
cation, and orientation of those in Study A. The voxel 
values for Study B’ are determined by transforming 
the coordinates of each voxel in Study B using the ap-
propriate transformation and interpolating between 
the surrounding voxels. The result is a set of images 
from the two studies with the same effective scan ge-
ometry (Fig. 5.11). These corresponding images can 
then be combined or fused in various ways to help 
elucidate the relationship between the data from the 
two studies (Fig. 5.12).

Fig. 5.10. Structure mapping. a) Tumor vol-
ume outlined on MR. b) Outlines stacked 
and tessellated to create a surface represen-
tation. c) The MR-based surface is mapped 
to the CT coordinate system and re-sliced 
along the image planes of the CT study. d) 
The derived contours are displayed over the 
CT images.

a

d

b

c
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A variety of techniques exist to present fused data, 
including the use of overlays, pseudo-coloring, and 
modifi ed gray scales. For example, the hard bone fea-
tures of a CT imaging study can be combined with the 
soft tissue features of an MR imaging study by adding 
the bone extracted from the CT to the MR data set. 
Another method is to display anatomic planes in a 
side-by-side fashion (Fig. 5.12). Such a presentation 
allows structures to be defi ned using both images si-
multaneously.

In addition to mapping and fusing image inten-
sities, 3D dose distributions computed in the coor-
dinate system of one imaging study can be mapped 
to another. For example, doses computed using the 
treatment planning CT can be reformatted and dis-
played over an MR study acquired after the start of 
therapy. With this data, regions of radiologic abnor-
mality post-treatment can be readily compared with 
the planned doses for the regions. With the introduc-
tion of volumetric imaging on the treatment units, 

Fig. 5.11. Study B is reformatted to match the image planes of Study A to produce Study B’. Because the center of a pixel in one 
study will not usually map to the exact center of another, interpolation of surrounding pixel values is required.

Fig. 5.12. Different approaches to display data which has been registered and reformatted

Fig. 5.13. Image–image visual validation using split-screen displays of native MR and reformatted CT study

CT CT CT

MR MR

MR
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treatment-delivery CT studies can now be acquired 
to more accurately determine the actual doses deliv-
ered. By acquiring these studies over the course of 
therapy and registering them to a common reference 
frame, doses for the representative treatments can 
be reformatted and accumulated to provide a more 
likely estimate of the delivered dose. This type of data 
can be used as input into the adaptive radiotherapy 
decision process.

5.4 
Validation

It is important to validate the results of a registra-
tion before making clinical decisions using fused im-
ages or mapped structures. To do this, most image 
registration systems provide numerical and visual 
verifi cation tools. A common numerical evaluation 
technique is to defi ne a set of landmarks for cor-
responding anatomic points on Study A and Study B 
and compute the distance between the actual location 
of the points defi ned in Study A and the resulting 
transformed locations of the points from Study B’. 
This calculation is similar to the “point matching” 
metric, but as discussed previously it may be diffi cult 
to accurately and suffi ciently defi ne the appropri-
ate corresponding points, especially when register-
ing multimodality data. Also, if deformations are 
involved, the evaluation is not valid for regions away 
from the defi ned points.

Regardless of the output of any numerical tech-
nique used, which may only be a single number, it is 
important for the clinician to appreciate how well in 

three dimensions the information they defi ne in one 
study is mapped to another. There are many visualiza-
tion techniques possible to help qualitatively evaluate 
the results of a registration; most of these are based 
on the data-fusion techniques already described. For 
example, paging through the images of a split-screen 
display and moving the horizontal or vertical divider 
across regions where edges of structures from both 
studies are visible can help uncover even small areas 
of mis-registration. Another interesting visual tech-
nique involves switching back and forth between cor-
responding images from the different studies at about 
once per second and focusing on particular regions of 
the anatomy to observe how well they are aligned.

In addition to comparing how well the images 
from Study A and Study B’ correspond at the periph-
ery of anatomic tissues and organs, outlines from one 
study can be displayed over the images of the other. 
Figure 5.14 shows a brain surface which was auto-
matically segmented from the treatment-planning 
CT study and mapped to the MR study. The agree-
ment between the CT-based outlines at the different 
levels and planes of the MR study demonstrate the 
accuracy of the registration.

In practice, the accuracy of the registration proc-
ess depends on a number of factors. For multimodal-
ity registration of PET/CT/MR data in the brain, reg-
istration accuracy on the order of a voxel size of the 
imaging studies can be achieved. Outside the head 
many factors confound single-voxel level accuracy, 
such as machine-induced geometric and intensity 
distortions as well as dramatic changes in anatomy 
and tissue loss or gain. Nevertheless, accuracy at the 
level of a few voxels is certainly possible in many situ-
ations.

Fig. 5.14. Image-geometry visual validation structure overlay of CT-defi ned brain outlines (green) over MR images
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5.5 
Conclusion

Accurate delineation of tumor volumes and critical 
structures is a vital component of treatment plan-
ning. The use of a single imaging study to perform 
the delineation is not always adequate and multiple 
studies may need to be combined. In order to use 
data from multiple studies, the spatial alignment of 
the studies must be determined. Image registration, 
the process of fi nding a coordinate transformation 
between two studies, can recover rigid, affi ne, and 
deformed transformations. Automatic registration 
requires a similarity measure or registration metric. 
The metric may be specialized for particular types of 
registration (e.g., single modality) or may be gener-
ally applicable. Manual registration can use a metric 
as well, or it can be based on interactive visual in-
spection. Deformations are generally not manually 
registered. Once the coordinate transformation be-
tween the imaging studies has been found, various 
structure mapping and data fusion techniques can 
be used to integrate the data. Before the resulting 
data is used in the clinic, a validation process should 
take place. This might include numerical measure-
ments such as comparisions of landmark positions, 
but should always include a visual inspection across 
the entire data set.

The techniques described in this chapter are tools 
to help use the information from different imaging 
studies in a common geometric framework. These 
techniques apply to both time-series single modal-
ity and multimodality imaging studies. Most modern 
radiotherapy treatment planning systems support 
the use of functional as well as multimodality ana-
tomic imaging using one or more of the techniques 
presented. These tools, however, cannot replace clini-
cal judgment. Different imaging modalities image 
the same tissues differently, and although tools may 
help us better understand and differentiate between 
tumor and non-tumor, they cannot yet make the ul-
timate decision of what to treat and what not to treat. 
These decisions still lie with the clinician, although 
they now have more sophisticated tools to help make 
these choices.
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6.1 
Introduction

Over the past two decades, a tremendous growth 
in digital image acquisition systems, display work-
stations, archiving systems and hospital/radiology 
information systems has taken place. The need for 
networked picture archiving and communications 
systems (PACS) is evident.

The conception of such a system dates back to the 
early 1970s (Lemke 1991); however, for many years 
the lack of basic technology to provide required net-
work infrastructure (e.g. network bandwidth, data 
communication standards, workfl ow management) 
as well as initial capital outlays in the multimillion 

dollar range impeded a widespread introduction 
of PACS into clinical practice. During the 1990s all 
aspects of the technology matured and the devel-
opment of “fi lmless” digital networked enterprises 
with a PACS (Dreyer et al. 2002) solution as the key 
component took off: primarily within the fi eld of ra-
diology, but the technology soon gained foothold in 
other medical disciplines as well. As such, digital im-
age networking is not merely a technological issue, 
but can contribute to improved health care as imag-
ing modalities become readily available across tradi-
tional departmental barriers. This development has 
had, and will have in many years to come, a dramatic 
impact on the working practice of medical imaging.

In this chapter we address various aspects of digi-
tal image networking with a special focus on radio-
therapy.

6.2 
Data Formats

There are many different data types in use in the hos-
pital environment ranging from comprehensive cine 
sequences, 3D image sets, voice recordings, to textual 
reports, prescriptions and procedures. They all play 
important roles in the fi eld of electronic health where 
the electronic patient record is one of the corner-
stones. Restricting the scope to that of imaging, four 
types of information are generally present in such 
data sets: image data (which may be unmodifi ed or 
compressed); patient identifi cation and demograph-
ics; and technical information about the imaging 
equipment in use as well as the exam, series and slice/
image. The formats used for storing these images may 
depend on the needs of equipment-specifi c reviewing 
applications, e.g. to facilitate rapid reload of the im-
ages into dedicated viewing consoles. There are three 
basic families of formats in use: the fi xed format (the 
layout is identical in each fi le); the block format (the 
header contains pointers to information); and the tag- 
or record-based format (each item contains its own 
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length). Extracting image data from such fi les is usu-
ally easy, even if a proprietary formatting is used, but 
to decipher every detail may require detailed insight 
into the format specifi cation. Examples of standard 
fi le formats in widespread use are Tagged Image File 
Format (TIFF), Graphic Interchange Format (GIF), 
JPEG fi le interchange format (JIFF), MPEG (mov-
ies), WAV and MIDI (voices). Recently, the Portable 
Network Graphic (PNG) has gained popularity, es-
pecially for Internet web applications. The stream of 
DICOM messages stored in a fi le may also be consid-
ered an image format and has become a common way 
of keeping medical images. The reading of such fi les 
may require detailed knowledge about the streaming 
syntax and the underlying communication protocols 
that were used (see below).

Extensive use of different image formats restricts 
the ability of cross-platform data sharing in a net-
worked environment, as dedicated fi le readers and 
viewers are needed. Important image characteristics, 
such as resolution, gray and/or color scale interpre-
tation, contrast and brightness, may deteriorate or 
even be lost due to inherent limitations of the for-
mat in use. The creation of suffi ciently comprehen-
sive image formats and the subsequent network 
transport from the modality to (any) application in 
a standardized fashion is therefore a major endeavor. 
In the next sections we explore one solution to this 
challenge.

6.3 
Networking: Basic Concepts

The International Organization for Standardization 
has defi ned the Open System Interconnection (OSI) 
reference model to be used as an architectural frame-
work for network communication. The OSI model 
describes how data in one application is transported 
trough a network medium to another application. 
The model concept consists of seven different layers, 
each layer specifying a particular network function 
(Table 6.1). The functions of the different layers are 
fairly self-contained, and the actual implementation 
of these functions (often called protocols) makes 
possible the communication or transport of data be-
tween the layers.

The design of a PACS network within a particu-
lar hospital environment would constitute a typical 
Local Area Network (LAN) where an Ethernet topol-
ogy (or Fast Ethernet, Gigabit Ethernet) with TCP/
IP is utilized to facilitate networked communica-

tion. Furthermore, several hospitals within the same 
health care organization can be connected into Wide-
Area Networks (WAN).

Having defi ned the basic framework for network 
operation, the challenge is to exploit this topology to 
facilitate smooth connectivity between the multiven-
dor modalities.

6.3.1 
Network Connectivity: The DICOM Standard

An apparently seamless exchange of data between dif-
ferent computer applications (or modalities; Fig. 6.1) 
in the hospital network has traditionally been re-
stricted to vendor-specifi c equipment that applies 
proprietary standards. In a modern multimodality 
hospital environment with a multitude of digital sys-
tems from many different manufacturers, proprietary 
solutions offer little fl exibility. They are costly and 
cumbersome to operate as custom interfaces must 
be developed and maintained, possibly error prone 
and safety critical since data consistency can be jeop-
ardized as data must be reformatted to suit a given 
equipment specifi cation. An additional maintenance 
level may be required to assure data quality when, for 
instance, equipment is upgraded or replaced. The use 
of such solutions may therefore represent a serious 
obstacle to the progress and introduction of state-of-
the art network technology.

During the 1980s the need for simplifi cation and 
standardization became apparent in order to ensure 
and maintain vital connectivity and interoperabil-
ity of all pieces of equipment. The medical equip-
ment industry, represented by the National Electrical 
Manufacturers Association (NEMA) and the medical 
community, represented by the American College 
of Radiology (ACR), joined forces to develop the 
Digital Imaging and Communications in Medicine 
standard (DICOM). The intention was to create an 

Table 6.1. The seven OSI model layers and an OSI model realiza-
tion with Ethernet and TCP/IP

Layer OSI model Ethernet with TCP/IP

7 Application Telnet, ftp, SMTP

6 Presentation Data formats (e.g. JPEG, MPEG, ASCII)

5 Session Session Control Protocol (SCP), DECNet

4 Transport Transmission Control Protocol (TCP)

3 Network Internet Protocol (IP)

2 Data link Ethernet Network Interface Card (NIC)

1 Physical Twisted pair CAT 5 cabling, FiberChannel
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industry standard to which all vendors of medical 
equipment could conform. This would establish a 
win–win situation for all involved parties: if DICOM 
support is built into a medical imaging device, it can 
be directly connected to another DICOM-compatible 
device, eliminating the need for a custom interface 
– DICOM defi nes the interface. Even though the fi rst 
versions of the standard, ACR-NEMA 1.0 (1985) and 
ACR-NEMA 2.0 (1989), never became very popular 
among vendors, the later DICOM v3.0 (DICOM) is 
by present-day standards ubiquitous. One important 
reason for this development is that the concepts of 
the OSI model (e.g. the use of standard network pro-
tocols and topology) were utilized when drafting the 
basic network functionality of DICOM. On one hand, 
this makes possible the use commercial off-the-shelf 
hardware and software, and on the other, this ensures 
that DICOM remains an open standard that encour-
ages both users and vendors to get involved in its de-
velopment.

DICOM was fi rst developed to address connectiv-
ity and inter-operability problems in radiology, but 
presently there are parts of the DICOM standard 
which defi ne service classes for many other modali-
ties. During the RSNA conference  in 1994, a meet-
ing was held at which a clear need was expressed for 
standardization of the way radiotherapy data (such 
as external beam and brachytherapy treatment plans, 
doses and images) are transferred from one piece 

of equipment to another. The importance of such a 
standard was clear. As a result of the RSNA meeting, 
an ad-hoc Working Group, later to become Working 
Group 7 (Radiotherapy Objects) was formed under 
the auspices of NEMA. Participating members of this 
group include many manufacturers of radiotherapy 
equipment, some academics and also members in-
volved with the IEC. The DICOM v3.0 standard is 
large and consists of 16 different parts, each part ad-
dressing a particular functional side of DICOM. The 
standard defi nes fundamental network interactions 
such as:
• Network Image Transfer: Provides the capabil-

ity for two devices to communicate by sending 
objects, querying remote devices and retrieving 
these objects. Network transfer is currently the 
most common connectivity feature supported by 
DICOM products.

• Open Media Interchange: Provides the capability 
to manually exchange objects and related infor-
mation (such as reports or fi lming information). 
DICOM standardizes a common fi le format, a 
medical directory and a physical media. Examples 
include the exchange of images for a publication 
and mailing a patient imaging study for remote 
consultation.

• Integration within the Health Care Environment: 
Hospital workfl ow and integration with other hos-
pital information systems have been addressed 

Fig. 6.1. A typical 
oncology LAN
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with the addition services such as Modality 
Worklist, Modality Performed Procedure Step, and 
Structured Reporting. This allows for scheduling 
of an acquisition and notifi cation of completion.

To facilitate the desired network functional-
ity, DICOM defi nes a number of network services 
(Service Classes). These services are described in 
brief below (Table 6.2).

ers and isocenters. These entities are typically 
identifi ed on devices such as CT scanners, physical 
or virtual simulation workstations or treatment 
planning systems.

• RT Plan, containing geometric and dosimetric 
data specifying a course of external beam and/or 
brachytherapy treatment, e.g. beam angles, col-
limator openings, beam modifi ers, and brachy-
therapy channel and source specifi cations. The 
RT Plan entity may be created by a simulation 
workstation and subsequently enriched by a 
treatment-planning system before being trans-
ferred to a record-and-verify system or treat-
ment device. An instance of the RT Plan object 
usually references an RT Structure Set instance 
to defi ne a coordinate system and set of patient 
structures.

• RT Image, specifying radiotherapy images that 
have been obtained on a conical imaging geom-
etry, such as those found on conventional simula-
tors and (electronic) portal imaging devices. It can 
also be used for calculated images using the same 
geometry, such as digitally reconstructed radio-
graphs (DRRs).

• RT Dose, containing dose data generated by a 
treatment-planning system in one or more of sev-
eral formats: three-dimensional dose data; isodose 
curves; DVHs; or dose points.

• RT Beams Treatment Record, RT Brachy Treat-
ment Record and RT Treatment Summary Record, 
containing data obtained from actual radiother-
apy treatments. These objects are the historical 
record of treatment and are linked with the other 
“planning” objects to form a complete picture of 
the treatment.

Table 6.2 DICOM service classes and their functional descrip-
tion

DICOM service class Task

Storage Object transfer/archiving

Media storage Object storage on media

Query/retrieve Object search and retrieval

Print management Print service

Patient, study, 
results management

Create, modify

Worklist management Worklist/RIS connection

Verifi cation Test of DICOM connection

6.3.2 
The DICOM Radiotherapy Model

In 1997 four radiotherapy-specifi c DICOM objects 
and their data model were ratifi ed. In 1999 three ad-
ditional objects were added to the DICOM standard, 
along with CD-R support for the storage of all ra-
diotherapy objects (Fig. 6.2). The seven DICOM RT 
objects are as follows:
• RT Structure Set, containing information related 

to patient anatomy, for example structures, mark-

Fig. 6.2. The DICOM RT data 
model

DICOM RT
DICOM 
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Working Group 7 is constantly involved in the 
maintenance of the existing radiotherapy objects 
and is examining potential uses of newer DICOM 
extensions in the radiotherapy context. Presently, 
the DICOM RT information objects provide a means 
of standardized transfer of most of the information 
that circulates in the radiotherapy department; how-
ever, there are at present few manufacturers of radio-
therapy equipment that fully support the DICOM RT 
standard. In particular, the full exploitation of the 
DICOM RT data model has only limited support.

6.3.3 
A Radiotherapy Example

The equipment scenario shown in Fig. 6.3 is used 
to illustrate how DICOM objects are produced and 
furthermore utilized during patient treatment. A se-
quence of possible steps is listed below along with 
their associated specifi ed DICOM objects:
1. The patient is scanned on a CT scanner, producing 

a DICOM CT image study. Other DICOM imaging 
modalities, such as MR, could also be involved.

2. A virtual simulation application queries the scan-
ner using DICOM, retrieves the images and per-
forms a virtual simulation. An RT Structure Set 
object is produced, containing identifi ed struc-
tures such as the tumor and critical organs. An 
associated RT Plan is also created, containing 
beam-geometry information. Digitally recon-
structed radiographs (DRRs) may also be created 
as RT Image objects.

3. A treatment-planning system then reads the CT 
images, RT Structure Set and RT Plan. It adds 
beam modifi ers, modifi es the beam geometries 
where necessary, and also calculates dosimetric 
data for the plan. A new RT Plan object is created, 
and RT Image DRRs may also be produced.

4. A record-and-verify system then obtains the com-
pleted RT Plan object and uses the data contained 
within it to initialize a treatment. Alternatively, 
the treatment machine itself could make use of 
the object directly. An EPID can create RT image 
verifi cation images and compare acquired images 
with DRRs created by the above steps.

5. Periodically during the course of treatment, the 
treatment machine or record and verify system 
creates Treatment Record objects, generally one 
for each treatment session.

6. At the end of the treatment, the entire DICOM 
set of DICOM objects is pushed to a dedicated 
DICOM Archive.

The above sequence illustrates just one scenario. 
In reality there is a wide variety of different utiliza-
tions possible, and the DICOM RT objects have been 
designed with this fl exibility in mind.

6.3.4 
The DICOM Conformance Statement

The standard specifi es that the manufacturer of any 
device claiming DICOM conformance shall provide 
a DICOM Conformance Statement that describes the 

Fig. 6.3. Scenario displays the 
different DICOM modalities 
that may be involved in pa-
tient treatment
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DICOM capabilities of the device (cf. part 2 of the 
DICOM standard). Many manufacturers make their 
conformance statements available on the Internet. 
Potential connectivity between two pieces of equip-
ment can therefore be evaluated in advance by 
reading Conformance statements which provide a 
foundation to determine connectivity and assess the 
potential inter-operability of two products, and in 
some cases identify potential problems without ever 
having physically connected them.

It is not suffi cent for a vendor to simply claim con-
formance to DICOM. The statement “This product is 
DICOM” has even less meaning in the radiotherapy 
domain, in which inter-operability is a very complex 
issue. For RT applications, it is usually not possible to 
determine inter-operability a priory – this must be 
established through extensive testing. Still, radiother-
apy professionals should insist upon a conformance 
statement for any device that claims to be DICOM 
conformant. Even so, DICOM conformance is vol-
untary and there is no authority that approves or 
may enforce conformance; however, by conforming 
to DICOM, one can develop safe, reliable computer 
applications with a high degree of built-in connec-
tivity.

6.3.5 
DICOM Problems

Even a standard such as DICOM does not completely 
eliminate connectivity issues, and the inherent fl ex-
ibility of the standard is a common source of confu-
sion and frustration. The DICOM standard, and the 
RT parts in particular, contains numerous so-called 
type-2 and type-3 attributes. Type-2 attributes must 
be present in a DICOM message for the message to 
be valid, but the attribute value may be sent empty 
if unknown, i.e. it is left with the application vendor 
to fi ll in the value. Type-3 attributes are optional, i.e. 
they may or may not be present in a message. Some 
of these attributes can be crucial for the functional-
ity of other applications. One example would be the 
tabletop positions (type 3) in the RT plan. These at-
tributes are very useful to ensure a correct setup of 
the patient during external-beam radiotherapy. The 
attributes should be provided by the planning system 
for use by the record and verify system when set-
ting up the patient at treatment. Presently, there are 
very few planning systems that provide these values. 
Another common problem is the different ways ven-
dors organize 3D image sets (CT, MR, etc.) into se-
ries. Some applications, such as treatment-planning 

systems and virtual simulators, rely on all images 
of a given type (e.g. all axial images) to exist in the 
same series in order to create a 3D reconstructed 
volumetric data representation. Especially older CT/
MR scanners tend to split such data sets into several 
series or even put localizer and axial images in the 
same series.

6.3.6 
How Are the Manufacturers Doing Today?

DICOM is now a mature standard. After a lot of hard 
work understanding, developing and testing product 
inter-operability in the radiotherapy context, a large 
number of manufacturers now have products avail-
able that support one or more of the radiotherapy 
DICOM objects. Vendors who have such products 
available, or have demonstrated them as works in 
progress, include Elekta, General Electric Medical 
Systems, IMPAC, Merge Technologies, Multidata, 
NOMOS, Nucletron, Picker International, ROCS, 
Siemens Medical Systems, SSGI, CMS and Varian 
Medical Systems.

6.4 
Archiving

Historically the term “archive” refers to an institu-
tion or facility that undertakes the task of preserv-
ing records for longer periods of time, sometimes 
indefi nitely. The core tasks of such an archive are 
typically to provide means for access control, ensure 
long-term media stability and readability, and to pre-
serve record authenticity, in addition to disaster safe 
storage. The records in such archives have tradition-
ally been data on analogue media such as paper and 
photographic fi lm that can be visually inspected. This 
description also applies to medical archives that typi-
cally contain patient records and X-ray fi lms.

The growth of information that exists in digital 
format within the medical environment poses a 
tremendous challenge to the traditional way of ar-
chiving. The main concern is probably the media on 
which the data is being stored. Media storage tech-
nology is evolving rapidly and there is an inherent 
risk that such media is outdated in a matter of few 
years (10–20 years) mainly because the hardware 
and software components required to access the 
storage media are no longer manufactured and sup-
ported.
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A fundamental prerequisite for digital archives is 
therefore that they easily can accommodate new stor-
age technology as well as to easily scale with grow-
ing demands in capacity. In other words, the archive 
should have built-in technology that, for instance, 
facilitates automatic data migration from one media/
storage technology to another. The cost of archiving 
digital information should thus include not only the 
running costs of technical maintenance and support, 
but also the cost of keeping up with the continuous 
changes in technology.

The role of the archives is also changing. Contrary 
to the historical “archive”, an important feature of a 
digital archive, is potential ease and speed of access. 
In a PACS implementation the archive serves as a 
common location for receiving all images as well as 
the source for distribution of images. To achieve this, 
the notions of on-line cache or storage (meaning fast 
access, low capacity), and long-term or secondary 
storage (meaning slow access but huge capacity), are 
often used. The present trend is that that these two 
concepts tend to merge as the storage media become 
cheaper.

Another important aspect in the digital archive is 
reliability and robustness. A common measure of re-
liability is a system’s “uptime”, and it is generally ac-
cepted that this should be greater than 99% per year, 
i.e. less than 3.6 days/year downtime. Still, the archive 
is in essence the hub in the PACS network and, if un-
available, production is jeopardized. It is therefore 
important to invest in hardware and software with 
built-in redundancy that can mitigate the effect of 
technology failures. In addition, special procedures 
and plans should be developed to handle catastrophic 
events such as fi res, earthquakes, etc., for instance, by 
establishing remote vaults for off-site data storage.

6.4.1 
Media Storage Technology

Storage media has for years enjoyed continuous prog-
ress in increased capacity and reduction in prices. 
This applies to all of the most popular storage media. 
It makes no sense to quote absolute fi gures as these 
will soon become dated; however, a crude estimate 
on a relative scale would roughly be (2004) 1000, 10, 
5 and 1, for solid-state memory, magnetic disk, mag-
netic tape storage (DLT) and optical storage (DVD), 
respectively, considering the media price only.

The choice of storage technology is usually a trade-
off between storage price/capacity and access time. 
The faster access times required, the more expensive 

the storage. For archiving purposes there has been a 
tradition to use magnetic disk for the on-line stor-
age and optical/magnetic tape for secondary storage; 
however, advances in both storage and LAN technol-
ogy along with lower prices has demonstrated a trend 
towards extensive use of large-scale magnetic-disk 
arrays for both on-line as well as long-term storage. 
The concepts of Network Attached Storage (NAS) 
and Storage Area Networks (SAN) have furthermore 
promoted this trend.

6.4.2 
Data Formats for Archiving

When using DICOM the problem of different or pro-
prietary data formats is reduced to having access to 
a DICOM object/message viewer. If one cannot use 
the application that generated the object initially to 
review the object, there exist several applications 
– either as freeware or for a small fee – that can 
be downloaded from the internet to accomplish 
this task. Some of these viewer applications include 
built-in DICOM storage providers that can be used 
to receive the DICOM message. In the fi eld of radio-
therapy proper viewers are still scarce probably due 
to the inherent complexity of the RT DICOM objects 
and the amount on non-image data.

The demands on the data format used for stor-
age in an archive are different. The amount of data 
to be stored is potentially enormous and many ar-
chives apply compression to allow for more data to 
be stored. From a user’s point of view the archive can 
be considered a black box that talks DICOM. As long 
as the archive gives back what once was stored, the 
user is satisfi ed and the internal storage format of the 
archive is as such irrelevant; however, if compression 
is used, the quality of the returned image may be re-
duced with respect to the original and this may not 
be acceptable. The DICOM committee has deemed 
lossless JPEG and lossy JPEG acceptable techniques 
for compressing medical images, and several archive 
vendors have implemented strategies for the use of 
these techniques. A common option is to make the 
compression technique in use dependent on the age 
of the object, i.e. newer objects are only made subject 
to lossless JPEG (two to three times reduction of most 
images), whereas older objects are compressed using 
lossy JPEG (10- to 100-fold reduction in image size). 
This implies that the archive continuously migrates 
data from lossless to lossy JPEG. Another strategy is 
to use different compression techniques for different 
image types. A noisy 512¥512 radiotherapy portal 
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image may suffer considerable loss in quality if lossy 
JPEG at a ratio of 10:1 is used, whereas a 4000¥8000 
MB chest X-ray may be compressed satisfactorily at 
a ratio of 60:1. Only careful testing can reveal what is 
the appropriate compression level.

Evidently, it is important that the user defi nes this 
strategy in accordance with health care regulations.

6.5 
Workfl ow Management: From Connectivity to 
Integration

The computer network of the hospital should pro-
vide the technical infrastructure required for rapid 
transmission and exchange of data between the dif-
ferent modalities used for diagnosis, planning and 
treatment. The use of DICOM will eventually provide 
excellent connectivity between the interacting par-
ties. But DICOM has as of yet limited support for 
workfl ow management and data integration. Custom-
made solutions may be required, and DICOM was not 
intended to solve this task.

In order to understand what DICOM can and can-
not provide, it is important to distinguish between 
DICOM connectivity and application interoperability. 
This is especially true in the domain of radiotherapy 
where the working process is very dynamic. DICOM 
connectivity refers to the DICOM message exchange 
standard responsible for establishing connections 
and exchanging properly structured messages so 
that an information object sent from one node will be 
completely received by the receiving node. In other 
words, the successful transfer of information: the 
successful “plug and exchange” between two pieces 
of equipment.

Beyond connectivity lies application interoper-
ability: the ability to process and manipulate infor-
mation objects. DICOM radiotherapy objects play 
a crucial role in enabling such interoperability, but 
sometimes “plug and play” at this level requires more 
than the standardized defi nition and coding of infor-
mation provided by DICOM. Specifi cation and test-
ing of the clinical application capabilities and data 
fl ow needs to be performed by the health care facility 
to ensure effective integration of the various DICOM 
applications. For example, transfer of IMRT (inten-
sity-modulated) data from an IMRT-capable treat-
ment-planning system requires a record-and-verify 
or treatment system capable of managing such dy-
namic treatments. DICOM requires implementers to 
explicitly specify these application-specifi c informa-

tion needs in a DICOM Conformance Statement that 
will provide the basis for achieving such application 
interoperability.

The service classes “Modality Worklist Manage-
ment (MWL)”, “Modality Performed Procedure Step 
(MPPS)” and “Storage Commitment (SC)” were all 
defi ned to facilitate the communication between 
information systems (RIS/HIS), PACS and the mo-
dalities. In principle, these services are designed to 
work independently but may also be set up to work 
together. The MWL enables scheduling information 
to be conveyed at the modalities and supplies the 
DICOM objects with HIS/RIS data such as patient 
demographics; the latter is very useful in avoiding 
typing errors at the modalities. The MPPS is used to 
update a schedule when a scheduled procedure step 
commences, as well as notifying the PACS when a 
scheduled procedure has been completed. In addi-
tion, details describing the performed procedure can 
be included such as a list of images acquired, acces-
sion numbers, radiation dose, etc. The SC facilitates 
automated or simplifi ed deletion of the images on the 
modalities as the PACS confi rms their safe storage.

It is customary to implement what is called a 
“broker” to deal with the intricate communication 
between the HIS/RIS, PACS and the modalities, i.e. 
to fully exploit the possibilities provided by MWL, 
MPPS and SC. The broker is often a proprietary third-
party software that has been designed to provide a 
dedicated solution to a user-specifi ed workfl ow.

6.6 
Telemedicine Applications in Radiation 
Therapy

The advances in modern radiotherapy throughout 
the past decade have, to a large extent, relied on 
technological development, in general, and in im-
aging and computer technology in particular. The 
role of CT images in treatment planning of radiation 
therapy is evident, and imaging modalities, such as 
MR and PET, represent functional or physiological, 
and biological or even molecular, information that 
will become essential in modern radiotherapy treat-
ment planning. Moreover, imaging tools have been 
developed and implemented in treatment verifi cation 
and for adaptive treatment strategies. Digital rep-
resentation of the image information, development 
of image information standards, such as DICOM, 
establishment of networks and protocols and im-
proved connectivity between modalities, are all cru-
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cial elements for the utilization of image information 
within a clinical radiotherapy environment; however, 
the development of information standards, protocols 
and network connectivity do not merely allow digital 
information fl ow within a single department, it also 
advocates communication between and among dif-
ferent institutions, and the formation of inter-insti-
tutional networks has thus become feasible.

Telemedicine has been widely adopted and pro-
vides increased access to medical expertise in a vari-
ety of medical applications. The most common areas 
for telemedicine have traditionally been radiology, 
pathology and dermatology – all examples of medi-
cal specialties where medical images play a key role. 
Other areas of medical practice, where digital medi-
cal information is available, e.g. emergency medicine 
and cardiology, have also adopted the concept of tele-
medicine. Telemedicine is most commonly defi ned as 
long-distance communication between medical cen-
ters. Telemedicine is, however, evolving conceptually, 
and The Mayo Clinic has introduced the term “tele-
healthcare” to include all aspects of communication 
between medical centers for patient care and limits 
the term “telemedicine” to communication between 
centers for purposes of individual patient care.

Although both radiology and radiation therapy 
are medical disciplines that utilize medical images to 
a large extent, telemedicine has until recently rarely 
been adopted in radiotherapy as compared with ra-
diology; thus, the experience is limited and only a few 
reports worldwide document clinical applications 
(Hashimoto et al. 2001a, b; Smith et al. 1998; Eich et 
al. 2004); however, it is expected that applications of 
telemedicine in radiation therapy will become equally 
important in improving the quality and standardiza-
tion of radiotherapy procedures. Telemedicine may 
especially play a key role in distributed radiotherapy 
services, in rural areas and possibly in developing 
countries, but also in the provision of high-end ra-
diation therapy, such as proton treatment, and in 
treatment of rare cancers; thus, telemedicine will be 
an appropriate tool in maintaining high-quality, de-
centralized radiotherapy services, and in preventing 
professional isolation (Reith et al. 2003). Moreover, 
telemedicine may facilitate collaboration between 
highly specialized centers of excellence with respect 
to rare conditions. The role of telemedicine in radia-
tion therapy is to provide a tool for apparent seamless 
dialogue between clinical experts in the following:
• Treatment planning and simulation of individual 

patients
• Treatment verifi cation of individual patients
• Follow-up and clinical trial management

Treatment planning and simulation of indi-
vidual patients is perhaps the most evident role 
of telemedicine in radiation therapy. There are at 
least two steps in this process where remote con-
sultation may be of clinical importance: (a) delin-
eation of the target volume based on 3D medical 
imaging, e.g. CT, MR and PET; and (b) the discus-
sion of beam setup and evaluation of the plan op-
tions. Delineation of the target volume is perhaps 
the most critical part of the treatment planning 
and with respect to clinical outcome, moreover, an 
inter- as well as intra-observer variability in tar-
get-volume delineation has been well documented. 
Lastly, imaging modality, settings and parameters 
are known to infl uence target-volume delineation. 
In rare cancers or at smaller, satellite radiotherapy 
clinics the required expertise may not be available 
for the optimal use of medical imaging in radiation 
therapy planning. Telemedicine in such situations 
may be the appropriate tool for consulting remote 
expertise. The ideal scenario is a real-time, on-line 
telemedicine service, where the target volume can 
be jointly delineated by the two physicians. Either 
a complete set of data must to be available at both 
centers or on-line transferred, e.g. as video signal, 
for simultaneous display. In addition, the drawing 
device must be operable from both centers. A few 
systems have been developed dedicated to remote 
treatment planning and virtual simulation (Ntasis 
et al. 2003; Huh et al. 2000; Stitt et al. 1998; Eich 
et al. 2004). A less attractive, but still useful, alterna-
tive is transfer of data from one center to the other 
for target delineation by an expert team. This mode 
of operation is less technology demanding, and re-
quires merely that exported data sets from the one 
institution be successfully imported by the other; 
however, the dialogue between the professionals is 
not facilitated by this procedure. Identical modes 
of operations are relevant with respect to beam 
setup and dose computation. Final plan evaluation, 
or selection of the preferred plan, often take place 
within a larger group of professionals including not 
only the oncologist but also the medical physicist, 
the dosimetrist/RTT and sometimes the radiologist 
and surgeon, in addition to the oncologist. If more 
centers are involved, telemedicine may be used to 
include all the professionals at the different institu-
tions in a clinical discussion of the fi nal treatment 
plan (Fig. 6.4).

Virtual simulation has become more common and 
frequently used in a number of radiotherapy clinics, 
and to a certain degree has replaced conventional 
simulation; however, conventional simulation is still 
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widely employed for simpler treatments where full 
3D treatment planning and dose computation may 
be superfl uous. At Hokkaido University School of 
Medicine, the THERAPIST system, has been applied 
for a number of years with success for remote simula-
tion of emergency radiotherapy of spinal cord com-
pression (Hashimoto et al. 2001a).

Treatment verifi cation of individual patient in-
volves most often acquisition of electronic portal 
images (EPI) and comparison with either digital 
simulator images of DRR. This task may very well 
be conducted by individuals on dedicated worksta-
tions, but compliance between intended and actual 
treatment is also often discussed during clinical con-
ferences, again involving a larger group of the staff, 
and may represent an important arena for quality 
management of individual patient treatment within 
the framework of decentralized radiotherapy ser-
vices, involving more regional or satellite units. 
Teleconferencing facilitates such an activity and sat-
isfi es the education aspects of quality management 
(Fig. 6.5). Hashimoto and co-workers have shown 
that remote consulting involving both DRRs and 
EPIs is both feasible and of value to clinical practice 
(Hashimoto et al. 2001b).

Follow-up and clinical trial management by tele-
medicine applications is a further development of the 

telemedicine concept in clinical radiation oncology. 
Telemedicine will allow multicenter participation in 
clinical trials that require strict adherence to proto-
cols of complex treatment planning and verifi cation. 
An example of this is the initiation of the German 
teleradiotherapeutic network for lymphoma trial 
(Eich et al. 2004) and the US dose escalation trial 
for early-stage prostate cancer (Purdy et al. 1996). 
All treatment plans, including dose-volume statistics, 
and treatment verifi cations data, both for dummy 
runs and actual patient treatment, are submitted to 
study coordination centers, such as RTOG, for pro-
tocol compliance verifi cation. Also, effi cient and 
consistent data collection pave the way for elaborate 
analysis on larger patient population materials than 
are commonly available; however, participation and 
data collection from a multitude of centers are most 
demanding with respect to data formats and network 
connectivity.

Classifi cation of Telemedicine Functionality in 
Radiation Therapy

Level-1 (Table 6.3) telemedicine in radiotherapy has 
been defi ned as teleconferencing and the display of 
radiotherapy related information, which facilitates 
discussions of target volumes and organs-at-risk de-

Clinic A Clinic B 

Clinic C

Fig. 6.4. Video-conferencing between three different radiotherapy institutions, demonstrating weekly clinical conference where 
a treatment plans are discussed, and electronic portal images, DRR and simulator images are reviewed
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Table 6.3. Functions featured by a telemedicine system in ra-
diation oncology. (Adapted from Olsen et al. 2000)

Tele 
conference

Image 
display

Data 
exchange

Real-time 
operations

Level 1 + + – –

Level 2 + + + –

Level 3 + + + +

lineation, treatment techniques and beam arrange-
ment, dose distributions and image-based treatment 
verifi cation (Olsen et al. 2000). Remote conventional 
simulation of single portals is another example of 
level-1 functionality. Remote, on-line operations are 
not supported. Level-1 functionality may be based on 
ISDN communication and video-signal technology, 
and is thus a low-cost service. The disadvantages are 
mostly related to its functional limitations.

Level-2 (Table 6.3) telemedicine features data 
transfer between institutions, and limited remote 
image handling. Remote treatment planning, non-
real time, is an example of a level-2 operation that 
requires transfer of data between the participating 
institutions. Different networking and data storage 
strategies may be implemented. At some institutions 
all data are stored in a central DICOM database that 
communicates with all the modalities, including those 
at the remote clinic. Others have chosen to establish 
DICOM databases at each clinic, which are replicated 
at certain intervals. Irrespectively of networking and 
storage strategy data transfer, compliant with level-2 
operations, higher-speed communication than that 

provided by ISDN is often required at this level of 
operation. Finally, it is pointed out that level-2 appli-
cations may raise medico-legal issues with respect to 
responsibility for treatment planning of the patient.

Level-3 (Table 6.3) telemedicine featuring remote, 
real-time operations and joint delineation of target 
volumes is an example of a level-3 functionality. The 
direct interaction and discussion that is feasible at 
this level may be of particular importance when a 
radiologist’s review is required for target-volume de-
lineation, or when a discussion is desirable for edu-
cational purposes. Level-3 application faces the same 
disadvantages as level-2 services with respect to costs 
and medico-legal issues.
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7.1 
Introduction

Since its introduction in 1972 by Godfrey N. 
Hounsfi eld, the importance of CT for the medical 
community has increased dramatically. Major techni-
cal improvements have taken place in the meantime 
(Fig. 7.1). Now whole-body scans with isotropic sub-
millimeter resolution are acquired routinely during 
a single breath-hold.

The fi rst step toward true 3D data acquisition 
was the introduction of spiral CT in 1989 by W.A. 
Kalender. This scan mode is based on a continuous 
rotation of the gantry while simultaneously trans-
lating the patient along the axis of rotation. The re-
sulting scan trajectory is a spiral and, by symmetry, 
means truly 3D data acquisition. The z-interpolation 
step allows selection of the longitudinal position (z-
position) of the reconstructed images arbitrarily and 
retrospectively. The continuous axial sampling is re-
quired for high-quality 3D displays and has led to a 
renaissance of CT (Kalender 2001). Multislice spiral 
CT (MSCT), which allows simultaneous scanning of 

M slices, further improved the scanner’s volume cov-
erage, z-resolution, and scan speed. For example, typ-
ical chest exams are carried out with collimations of 
1¥5 mm in 36 s with single-slice, 4¥1 mm in 30 s with 
4-slice, and 16¥0.75 mm in 10 s with 16-slice scan-
ners, and in the near future 64¥0.6-mm scan modes 
will be used (Fig. 7.2).
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Fig. 7.2. Generations of fan-beam CT scanners: from single-
slice to multislice to true cone-beam CT with up to 64 slices

Fig. 7.1. Subsecond true 3D cone-beam scanner with submil-
limeter resolution


